如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.
(1)    (2)見解析
解:以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(2a,0,0),B(2a,2a,0),C(0,2a,0),D1(0,0,a),F(xiàn)(a,0,0),B1(a,a,a),C1(0,a,a).

(1)∵=(-a,a,a),=(0,0,a),
∴cos〈〉=,
所以異面直線AB1與DD1所成角的余弦值為.
(2)證明:∵=(-a,-a,a),
=(-2a,0,0),=(0,a,a),
∴FB1⊥BB1,F(xiàn)B1⊥BC.
∵BB1∩BC=B,∴FB1⊥平面BCC1B1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形中,,點(diǎn)分別是的中點(diǎn),點(diǎn)上,沿將梯形翻折,使平面平面.

(1)當(dāng)最小時(shí),求證:;
(2)當(dāng)時(shí),求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.

(1)證明:在平面BCE上,一定存在過(guò)點(diǎn)C的直線l與直線DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點(diǎn)M在線段EC上(除端點(diǎn)外)

(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線l⊥平面α,直線l的方向向量為s,平面α的法向量為n,則下列結(jié)論正確的是(  )
A.s=(1,0,1),n=(1,0,-1)
B.s=(1,1,1),n=(1,1,-2)
C.s=(2,1,1),n=(-4,-2,-2)
D.s=(1,3,1),n=(2,0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F(xiàn)分別是棱AB,BC,CP的中點(diǎn),AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線l的方向向量為=(-1,1,1),平面π的法向量為=(2,x2+x,-x),若直線l∥平面π,則x的值為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是單位向量,且,則的值為      

查看答案和解析>>

同步練習(xí)冊(cè)答案