已知
1
m
+
2
n
=1(m>0,n>0)
,當mn取得最小值時,直線y=-
2
x+2
與曲線
x|x|
m
+
y|y|
n
=1
交點個數(shù)為______.
由均值不等式
1=
1
m
+
2
n
≥2
1
m
1
n
,
當且僅當
1
m
=
2
n
時等號成立,
也就是
1
m
=
2
n
=
1
2
,
所以m=2,n=4.
x|x|
m
+
y|y|
n
=1
,
x|x|
2
+
y|y|
4
=1

①當x>0,y>0,
表示
x2
2
+
y2
4
=1
的橢圓;
②當x>0,y<0,
表示
x2
2
-
y2
4
=1
以x軸為實軸的雙曲線;
③當x<0,y>0,
表示
y2
4
-
x2
2
=1
以y軸為實軸的雙曲線;
④當x<0,y<0,
表示-
x2
2
-
y2
4
=1
,
因為左邊恒≤0所以不可能=右邊,
所以此時無解.
所以如圖得到圖象,
結合圖象知直線y=-
2
x+2
與曲線
x|x|
m
+
y|y|
n
=1
交點個數(shù)是2個.
故答案為:2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓E1
x2
a21
+
y2
b21
=1
和橢圓E2
x2
a22
+
y2
b22
=1
滿足
a2
a1
=
b2
b1
=m(m>0)
,則稱這兩個橢圓相似,m是相似比.
(Ⅰ)求過(2,
6
)
且與橢圓
x2
4
+
y2
2
=1
相似的橢圓的方程;
(Ⅱ)設過原點的一條射線l分別與(Ⅰ)中的兩橢圓交于A、B兩點(點A在線段OB上).
①若P是線段AB上的一點,若|OA|,|OP|,|OB|成等比數(shù)列,求P點的軌跡方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2).設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線y2=2px(p>0),其準線方程為x=-1,過準線與x軸的交點M做直線l交拋物線于A、B兩點.
(Ⅰ)若點A為MB中點,求直線l的方程;
(Ⅱ)設拋物線的焦點為F,當AF⊥BF時,求△ABF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(200個•陜西)已知橢圓C:
x2
2
+
y2
b2
=1
(個>b>0)的離心率為
3
,短軸一個端點到右焦點的距離為
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于個、B兩點,坐標原點O到直線l的距離為
3
2
,求△個OB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線y2=4x的焦點作傾斜角為
π
3
的直線與拋物線交于點A、B,則|AB|=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P在橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F(xiàn)1、F2分別為橢圓C的左、右焦點,滿足|PF1|=6-|PF2|,且橢圓C的離心率為
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點Q(1,0)且不與x軸垂直的直線l與橢圓C相交于兩個不同點M、N,在x軸上是否存在定點G,使得
GM
GN
為定值.若存在,求出所有滿足這種條件的點G的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點為F,點K(-1,0)為直線l與拋物線C準線的交點.直線l與拋物線C相交于A,B兩點,點A關于x軸的對稱點為D.
(1)求拋物線C的方程;
(2)設
FA
FB
=
8
9
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知在?ABCD中,O1,O2,O3為對角線BD上三點,且BO1=O1O2=O2O3=O3D,連接AO1并延長交BC于點E,連接EO3并延長交AD于F,則AD∶FD等于(  )
A.19∶2B.9∶1
C.8∶1D.7∶1

查看答案和解析>>

同步練習冊答案