解:(1)由函數(shù)y=Asin(ωx+φ)(x∈R,A>0,ω,0,|φ|<
)的圖象可得A=2,由
•T=
•
=
=
,∴ω=
.
再由五點法作圖可得
+φ=
,∴φ=
,故函數(shù)y=2sin(
x+
).
(2)由(1)可得f(x)最小正周期為
=
=3π.
要使f(x)取最小值,有sin(
x+
)=-1,故
x+
=2kπ-
,k∈z,解得 x=3kπ-
,
故使f(x)取最小值的x的集合為 {x|x=3kπ-
,k∈z}.
(3)令2kπ-
≤(
x+
)≤2kπ+
,k∈z,可得3kπ-
≤x≤3kπ+
,故函數(shù)的增區(qū)間為[3kπ-
,3kπ+
],k∈z.
令2kπ+
≤(
x+
)≤2kπ+
,k∈z,可得3kπ+
≤x≤3kπ+
,故函數(shù)的增區(qū)間為[3kπ+
,3kπ+
],k∈z.
分析:(1)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,從而求得函數(shù)的解析式.
(2)由f(x)最小正周期為
,運算求得結(jié)果,要使f(x)取最小值,需sin(
x+
)=-1,故
x+
=2kπ-
,k∈z,由此求得使f(x)取最小值的x的集合.
(3)令2kπ-
≤(
x+
)≤2kπ+
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.令2kπ+
≤(
x+
)≤2kπ+
,k∈z,求得x的范圍,可得函數(shù)的減區(qū)間.
點評:本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求解析式,函數(shù)y=Asin(ωx+∅)的周期性與求法,求得函數(shù)y=Asin(ωx+∅)的單調(diào)區(qū)間與最值,屬于中檔題.