已知函數(shù)f(x)=|1+lgx|.若a≠b且f(a)=f(b),則a+b的取值范圍是
 
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意f(a)=f(b),求出ab的關(guān)系,利用基本不等式確定范圍.
解答: 解:因?yàn)閒(a)=f(b),
所以|1+lga|=|1+lgb|,a>0,b>0,
即|lg10a|=|lg10b|,所以a=b(舍去),ab=
1
100
,
所以a+b>2
ab
=
2
10
=
1
5
,
故a+b的取值范圍是(
1
5
,+∞).
故答案為:(
1
5
,+∞).
點(diǎn)評(píng):本小題主要考查對(duì)數(shù)函數(shù)的性質(zhì),以及基本不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知t∈R,設(shè)函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上無(wú)極值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范圍;
(Ⅲ)當(dāng)t=1時(shí),若f(x)≤xex-5x2+5x-m+2(e為自然對(duì)數(shù)的底數(shù))對(duì)任意x∈[0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a+log2x,且f(a)=1,則函數(shù)f(x)的零點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,則an+bn=
 
.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1 中,AB=2,AA1=AD=1,點(diǎn)E、F、G分別是棱AA1、C1D1與BC的中點(diǎn),那么四面體B1-EFG的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體的一個(gè)頂點(diǎn)上三條棱長(zhǎng)分別是3、4、5,則其體對(duì)角線長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的函數(shù)f(x)同時(shí)滿足:①f(x)+f(-x)=1,②f(1-x)=f(x),則f(2009)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足an+1+(-1)n•an=2n-1,則{an}的前40項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(1+x)=f(1-x),則函數(shù)y=f(x)在x∈[0,10]內(nèi)零點(diǎn)個(gè)數(shù)至少有(  )
A、3個(gè)B、4個(gè)C、5個(gè)D、6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案