(本小題滿分13分)
已知直線,圓.
(Ⅰ)證明:對(duì)任意,直線恒過(guò)一定點(diǎn)N,且直線與圓C恒有兩個(gè)公共點(diǎn);
(Ⅱ)設(shè)以CN為直徑的圓為圓D(D為CN中點(diǎn)),求證圓D的方程為:
(Ⅲ)設(shè)直線與圓的交于A、B兩點(diǎn),與圓D:交于點(diǎn)(異于C、N),當(dāng)變化時(shí),求證為AB的中點(diǎn).
(Ⅰ)∵N在圓C內(nèi),∴直線與圓C恒有兩個(gè)公共點(diǎn).
(Ⅱ)軌跡的方程為.

試題分析:(1)利用圓心到直線的距離小于半徑,判定,直線l與圓C總有兩個(gè)不同交點(diǎn)A、B;
(2)求解CN的中點(diǎn)坐標(biāo)和CN的長(zhǎng)度的一半得到圓心和半徑進(jìn)而求解圓的方程。
(3)利用圓的方程以及交點(diǎn)問(wèn)題得到求證。
(Ⅰ)方法1:聯(lián)立方程組
消去,得

∴直線與圓恒有兩個(gè)公共點(diǎn)………………………………………………6分
方法2:將圓化成標(biāo)準(zhǔn)方程為
可得:.
,所以直線過(guò)定點(diǎn)N(1,-1)
∵N在圓C內(nèi),∴直線與圓C恒有兩個(gè)公共點(diǎn).…………………………6分
(Ⅱ)設(shè)CN的中點(diǎn)為D,由于°,

∴M點(diǎn)的軌跡為以CN為直徑的圓.
CN中點(diǎn)D的坐標(biāo)為(,0),.
∴軌跡的方程為.……………………13分
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于圓的方程的求解的常用方法的運(yùn)用,以及通過(guò)圓心到直線的距離判定線圓的位置關(guān)系的運(yùn)用。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知圓,是否存在斜率為的直線,使被圓截得的弦為直徑的圓經(jīng)過(guò)原點(diǎn),若存在,求出直線的方程,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面與球O相交于周長(zhǎng)為的⊙,A、B為⊙上兩點(diǎn),若∠AOB=,且A、B的球面距離為,則的長(zhǎng)度為(    )
A.1            B.         C.       D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 已知圓過(guò)兩點(diǎn),且圓心上.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線, 為切點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求經(jīng)過(guò)和直線相切,且圓心在直線上的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

與圓,圓同時(shí)外切的動(dòng)圓圓心的軌跡方程是_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)圓上一點(diǎn)的切線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果圓(x-2a)2+(y-a-3)2=4上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為1,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程表示圓,則的取值范圍是(    )
A.        B.   
C.      D.

查看答案和解析>>

同步練習(xí)冊(cè)答案