【題目】下列判斷中正確的是( )

A. “若,則有實數(shù)根”的逆否命題是假命題

B. ”是“直線與直線平行”的充要條件

C. 命題“”是真命題

D. 已知命題,使得;命題,則是真命題.

【答案】D

【解析】

A,根據(jù)有實數(shù)根的等價條件,判斷A是否正確;

B, 根據(jù)“直線與直線平行” 的充要條件是,判斷B;

C, 根據(jù)sinx+cosx,判斷C;

D,先判斷p,q的真假,再利用復合命題真假性的判定方法得出結果

對于A,有實數(shù)根,∴△=1+4×m,∴m,∴,則有實數(shù)根是正確的,所以逆否命題是正確的,故A錯誤;

對于B, “直線與直線平行” 的充要條件是”是“”的充分不必要條件,故B錯誤;

對于C, ∵sinx+cosxsin(x,∴命題“”為假命題,故C錯誤

對于D,∵﹣1≤cosx≤1,∴lgcosx≤0,∴命題p為假命題,

命題qx<0,3x>0,是真命題,∴是真命題,故D正確.

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,,且,又平面,.

求:(1)二面角的大。ㄓ梅慈呛瘮(shù)表示);

2)點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為普及學生安全逃生知識與安全防護能力,某學校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預賽和決賽兩個階段,預賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.

分數(shù)(分數(shù)段)

頻數(shù)(人數(shù))

頻率

合計

(1)求表中,,的值;

(2)按規(guī)定,預賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學取得決賽資格,記高一(2)班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁、戊和己6人圍坐在一張正六邊形的小桌前,每邊各坐一人.已知:①甲與乙正面相對;②丙與丁不相鄰,也不正面相對.若己與乙不相鄰,則以下選項正確的是(

A.若甲與戊相鄰,則丁與己正面相對B.甲與丁相鄰

C.戊與己相鄰D.若丙與戊不相鄰,則丙與己相鄰

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調區(qū)間;

(3)試比較的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑米的半圓形花圓中設計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(注意是兩側)種植綠化帶;再沿弧修一條弧形小路,在小路的一側(注意是一側)種植綠化帶,小路與綠化帶的寬度忽略不計。

(1)設(弧度),將綠化帶的總長度表示為的函數(shù)

(2)求綠化帶的總長度的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標系中的原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

同步練習冊答案