【題目】下列判斷中正確的是( )
A. “若,則有實數(shù)根”的逆否命題是假命題
B. “”是“直線與直線平行”的充要條件
C. 命題“”是真命題
D. 已知命題,使得;命題,則是真命題.
【答案】D
【解析】
A,根據(jù)有實數(shù)根的等價條件,判斷A是否正確;
B, 根據(jù)“直線與直線平行” 的充要條件是或,判斷B;
C, 根據(jù)sinx+cosx,判斷C;
D,先判斷p,q的真假,再利用復合命題真假性的判定方法得出結果.
對于A, ∵有實數(shù)根,∴△=1+4×m,∴m,∴若,則有實數(shù)根是正確的,所以逆否命題是正確的,故A錯誤;
對于B, “直線與直線平行” 的充要條件是或,∴“”是“或”的充分不必要條件,故B錯誤;
對于C, ∵sinx+cosxsin(x),∴命題“”為假命題,故C錯誤;
對于D,∵﹣1≤cosx≤1,∴lgcosx≤0,∴命題p為假命題,
命題q:x<0,3x>0,是真命題,∴是真命題,故D正確.
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為普及學生安全逃生知識與安全防護能力,某學校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預賽和決賽兩個階段,預賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.
分數(shù)(分數(shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
合計 |
(1)求表中,,,,的值;
(2)按規(guī)定,預賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學取得決賽資格,記高一(2)班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁、戊和己6人圍坐在一張正六邊形的小桌前,每邊各坐一人.已知:①甲與乙正面相對;②丙與丁不相鄰,也不正面相對.若己與乙不相鄰,則以下選項正確的是( )
A.若甲與戊相鄰,則丁與己正面相對B.甲與丁相鄰
C.戊與己相鄰D.若丙與戊不相鄰,則丙與己相鄰
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑為米的半圓形花圓中設計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(注意是兩側)種植綠化帶;再沿弧修一條弧形小路,在小路的一側(注意是一側)種植綠化帶,小路與綠化帶的寬度忽略不計。
(1)設(弧度),將綠化帶的總長度表示為的函數(shù);
(2)求綠化帶的總長度的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標系中的原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(為實數(shù).)
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線與曲線有公共點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com