一家5口春節(jié)回老家探親,買到了如下圖的一排5張車票:

其中爺爺行動不便要坐靠近走廊的位置,小孫女喜歡熱鬧要坐在左側(cè)三個連在一起的座位之一,則座位的安排方式一共有
 
種.
考點(diǎn):排列、組合及簡單計數(shù)問題
專題:排列組合
分析:有題意需要分兩類,第一類,當(dāng)爺爺在6排D座時,第二類,當(dāng)爺爺在6排C座時,再排小孫女,最后排其他人,根據(jù)分類計數(shù)原理可得
解答: 解:第一類,當(dāng)爺爺在6排D座時,再排小孫女,最后排其他人,共有
C
1
3
A
3
3
=18種,
第二類,當(dāng)爺爺在6排C座時,再排小孫女,最后再排其他人,共有
C
1
2
A
3
3
=12種,
根據(jù)分類計數(shù)原理共有18+12=30種,
故答案為:30
點(diǎn)評:本題考查了分類計數(shù)原理,關(guān)鍵如何分類,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為奇函數(shù)且在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+1
bx+c
是奇函數(shù),a,b,c為常數(shù)
(1)求實(shí)數(shù)c的值;
(2)若a,b∈Z,且f(1)=2,f(2)<3,求f(x)的解析式;
(3)對于(2)中的f(x),若f(x)≥m-2x對x∈(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-4|+|x-a|,x∈R.
(1)證明:當(dāng)a=1時,不等式lnf(x)>1成立;
(2)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2+
k
x
6(k∈N*)的展開項(xiàng)的常數(shù)系數(shù)小于120,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=n-1,x∈[n,n+1),n∈N,函數(shù)g(x)=log2x,則方程f(x)=g(x)實(shí)數(shù)根的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1、x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(1)證明函數(shù)f1(x)=x2是定義域上的C函數(shù);
(2)判斷函數(shù)f2(x)=
1
x
(x<0)
是否為定義域上的C函數(shù),請說明理由;
(3)若f(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明f(x)不是R上的C函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O是平面上一點(diǎn),A、B、C是平面上不共線三點(diǎn),動點(diǎn)P滿足:
OP
=
OA
+λ(
AB
+
AC
),λ∈[-1,2],已知λ=1時,|
AP
|=2,則
PA
PB
+
PA
PC
的最大值為( 。
A、-2B、24C、48D、96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的偶函數(shù),對任意x∈R,有f(x+6)=f(x)+f(3)成立,且f(-2)=-1,當(dāng)x1,x2∈[0,3]且x1≠x2時,有
f(x1)-f(x2)
x1-x2
>0,給出下列命題:
①f(2012)=-1;
②x=-6是y=f(x)圖象的一條對稱軸;
③y=f(x)在[-9,-6]上是增函數(shù);
④函數(shù)y=f(x)在[-9,9]上有4個零點(diǎn).
正確命題的序號是( 。
A、①②B、③④
C、①②③④D、①②④

查看答案和解析>>

同步練習(xí)冊答案