在△ABC中,a、b,c是角A,B,C所對的邊,若sinA+sin(C-B)=sin2B,且
c
a
<cosB,則△ABC的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形
考點:三角形的形狀判斷
專題:計算題,解三角形
分析:由sinA+sin(C-B)=sin2B,可得2sinCcosB=2sinBcosB,
c
a
<cosB,可得cosB≠0,從而sinC=sinB,即可得出結(jié)論.
解答: 解:∵sinA+sin(C-B)=sin2B,
∴sin(C+B)+sin(C-B)=sin2B,
∴2sinCcosB=2sinBcosB,
c
a
<cosB,∴cosB≠0
∴sinC=sinB,
∴C=B,
∴△ABC是等腰三角形.
故選:A.
點評:本題考查三角形的形狀判斷,考查三角函數(shù)知識,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象過點(2,0),那么函數(shù)y=f(x+3)-1的圖象一定過下面點中的(  )
A、(-1,1)
B、(1,-1)
C、(-1,-1)
D、(1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域:
(1)y=-2sin2x+2cosx+2;
(2)y=3cosx-
3
sinx,x∈[0,
π
2
];
(3)y=sinx+cosx+sinxcosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l被兩平行直線3x+y-6=0和3x+y+3=0所截得的線段長為3,且直線過點(1,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
x
的定義域是
 
,值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AB=
2

(1)求二面角A-PC-B的余弦值;
(2)設(shè)E為棱PC上的點,滿足直線DE與平面PBC所成角的正弦值為
2
2
3
,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:5x+3y=0和l2:5x-3y=0,寫出兩個以直線l1和l2為漸近線的雙曲線標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,則a2014=( 。
A、
4
5
B、
2
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號是
 

查看答案和解析>>

同步練習冊答案