已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值。
(1) (2) 當(dāng)時(shí),取得最大值0.
解析試題分析:(1). 1分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e8/1/oapkn1.png" style="vertical-align:middle;" />為的極值點(diǎn),所以. 2分
即,解得. 3分
又當(dāng)時(shí),,從而的極值點(diǎn)成立. 4分
(2)若時(shí),方程可化為,.
問題轉(zhuǎn)化為在上有解,
即求函數(shù)的值域. 7分
以下給出兩種求函數(shù)值域的方法:
方法1:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/b/mnwba1.png" style="vertical-align:middle;" />,令,
則 , 9分
所以當(dāng),從而上為增函數(shù),
當(dāng),從而上為減函數(shù), 10分
因此.
而,故,
因此當(dāng)時(shí),取得最大值0. 12分
方法2:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/b/mnwba1.png" style="vertical-align:middle;" />,所以.
設(shè),則.
當(dāng)時(shí),,所以在上單調(diào)遞增;
當(dāng)時(shí),,所以在上單調(diào)遞減;
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/4/oetyz1.png" style="vertical-align:middle;" />,故必有,又,
因此必存在實(shí)數(shù)使得,
,所以上單調(diào)遞減;
當(dāng),所以上單調(diào)遞增;
當(dāng)上單調(diào)遞減;
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9f/7/1irf43.png" style="vertical-align:middle;" />,
當(dāng),則,又.
因此當(dāng)時(shí),取得最大值0. 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了運(yùn)用導(dǎo)數(shù)來判定函數(shù)單調(diào)性以及函數(shù)的 極值問題,通過利用函數(shù)的單調(diào)性放縮法來證明不等式,進(jìn)而得到最值,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)在區(qū)間上是增函數(shù),在區(qū)間,上是減函數(shù),又
(1)求的解析式;
(2)若在區(qū)間上恒有成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
題文已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若不等式對(duì)一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)其中
(1)若=0,求的單調(diào)區(qū)間;
(2)設(shè)表示與兩個(gè)數(shù)中的最大值,求證:當(dāng)0≤x≤1時(shí),||≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且。
(1)若函數(shù)在處的切線與軸垂直,求的極值。
(2)若函數(shù)在,求實(shí)數(shù)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科設(shè)函數(shù)。(Ⅰ)若函數(shù)在處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com