【題目】已知

討論的單調(diào)性

若在定義域內(nèi)總存在使成立,的最小值

【答案】見(jiàn)解析的最小值是

【解析】試題分析:(1定義域?yàn)?/span> ,分類討論得到單調(diào)性情況;(2)分參得到恒成立,令,求導(dǎo)得到上單調(diào)減上單調(diào)增,所以,得。

試題解析:

定義域?yàn)?/span>

①當(dāng)時(shí),解得 ,解得

上單調(diào)遞減上單調(diào)遞增;

②當(dāng)時(shí)解得 ,解得

上單調(diào)遞減,上單調(diào)遞增

③當(dāng)時(shí), (僅在時(shí)等號(hào)成立

上單調(diào)遞增;

④當(dāng)時(shí),解得 ,解得

上單調(diào)遞減,上單調(diào)遞增

(Ⅱ)由已知,在定義域內(nèi)總存在使成立,

,使成立

,

上單調(diào)遞增上單調(diào)遞減

所以, 式轉(zhuǎn)化為

使成立

,

上單調(diào)減上單調(diào)增

所以, 的最小值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為. 

(1)當(dāng)時(shí),求曲線和曲線的交點(diǎn)的直角坐標(biāo);

(2)當(dāng)時(shí),設(shè), 分別是曲線與曲線上動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面 , .

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一名同學(xué)家開(kāi)了一個(gè)小賣(mài)部,他為了研究氣溫對(duì)某種引領(lǐng)銷(xiāo)售的影響,記錄了2015年7月至12月每月15號(hào)下午14時(shí)的氣溫和當(dāng)天的飲料杯數(shù),得到如下資料:

該同學(xué)確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若有線性回歸方程得到估計(jì),數(shù)據(jù)與所宣稱的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)3杯,則認(rèn)為得到的線性回歸方程是理想的,請(qǐng)問(wèn)(2)所得線性回歸方程是否理想.

附:對(duì)于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計(jì)分別為: , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),汕頭市面向全市征召義務(wù)宣傳志愿者,從符合條件的 500 名志愿者中隨機(jī)抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:

(1)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這 500 名志愿者中年齡在歲的人數(shù);

(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@ 10 名志愿者中選取 3 名擔(dān)任主要負(fù)責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位: )和時(shí)段投入成本(單位:萬(wàn)元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說(shuō)明理由)

2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知時(shí)段投入成本的關(guān)系為,當(dāng)時(shí)段控制溫度為28℃時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?

附:①對(duì)于一組具有有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 , ,平面平面, , , 中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案