已知在區(qū)間上是增函數(shù),實(shí)數(shù)組成集合;設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根實(shí)數(shù)使得不等式使得對任意及恒成立,則的解集是( )
A. | B. |
C. | D. |
A
解析試題分析:∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立.①
設(shè)φ(x)=x2-ax-2,
方法一:①?φ(1)=1-a-2≤0且φ(-1)=1+a-2≤0?-1≤a≤1,
∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0
∴A={a|-1≤a≤1}.
方法二:
①?,φ(-1)=1+a-2≤0或,φ(1)=1-a-2≤0?0≤a≤1或-1≤a≤0
?-1≤a≤1.
∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0
∴A={a|-1≤a≤1}.
由=,得x2-ax-2=0,∵△=a2+8>0,∴x1,x2是方程x2-ax-2=0的兩非零實(shí)根,x1+x2=a,x1x2=-2,從而|x1-x2|===∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當(dāng)且僅當(dāng)m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立.②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
方法一:
②?g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.,
方法二:
當(dāng)m=0時(shí),②顯然不成立;
當(dāng)m≠0時(shí),
②?m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0
?m≥2或m≤-2.
所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.,選A.
考點(diǎn):本題主要考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用和不等式等有關(guān)知識,考查數(shù)形結(jié)合及分類討論思想和靈活運(yùn)用數(shù)學(xué)知識分析問題和解決問題的能力。
點(diǎn)評:解決該試題的關(guān)鍵是根據(jù)一元二次方程根與系數(shù)的關(guān)系寫出不等式先看成關(guān)于a的不等式恒成立再看成關(guān)于t的一次不等式恒成立,讓兩端點(diǎn)大等于零,以及函數(shù)單調(diào)遞增導(dǎo)數(shù)大于等于零列出不等式解之
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)(為常數(shù),且),對于定義域內(nèi)的任意兩個(gè)實(shí)數(shù)、,恒有成立,則正整數(shù)可以取的值有
A.4個(gè) | B.5個(gè) | C.6 個(gè) | D.7個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若,則的定義域?yàn)?table name="optionsTable" cellpadding="0" cellspacing="0" width="100%">
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com