【題目】在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個(gè)偶數(shù)2,4,6;再染6后面最鄰近的5個(gè)連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個(gè)連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個(gè)連續(xù)奇數(shù)29,31,,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,,則在這個(gè)紅色子數(shù)列中,由1開(kāi)始的第1000個(gè)數(shù)是_________
【答案】1968
【解析】
記第次染色的最后一個(gè)數(shù)字為,由題可得,第次染色共染了個(gè)數(shù)字,且第次染色的最后一個(gè)數(shù)字為,求出前次染色數(shù)字的個(gè)數(shù)之和為:,即可判斷第1000個(gè)數(shù)在第次染色的數(shù)字中,求得第次染色的最后一個(gè)數(shù)字為:,所以第1000個(gè)數(shù)是第次染色中的第個(gè)數(shù)偶數(shù),問(wèn)題得解。
記第一次染色:染1;共1個(gè)數(shù),且所染數(shù)字都是奇數(shù)。
第二次染色:染3個(gè)偶數(shù)2,4,6;共3個(gè)數(shù),且所染數(shù)字都是偶數(shù)。
第三次染色:染6后面最鄰近的5個(gè)連續(xù)奇數(shù)7,9,11,13,15;共5個(gè)數(shù),,且所染數(shù)字都是奇數(shù)。
第四次染色:染15后面最鄰近的7個(gè)連續(xù)偶數(shù)16,18,20,22,24,26,28;共7個(gè)數(shù),且所染數(shù)字都是偶數(shù)。
則第次染色:共個(gè)數(shù)字,,且所染數(shù)字與的奇偶性相同。
每次染數(shù)的個(gè)數(shù)依次構(gòu)成一個(gè)等差數(shù)列,
前次染色數(shù)字的個(gè)數(shù)之和為:
令,則
所以第1000個(gè)數(shù)字在第次染色的數(shù)字中
記第次染色的最后一個(gè)數(shù)字為,由題可得:,,,,……,依次類(lèi)推
所以第次染色的最后一個(gè)數(shù)字為:,且前次染色數(shù)字的個(gè)數(shù)之和為:,
所以第1000個(gè)數(shù)在第次染色中的第位數(shù)字,
即從之后的第個(gè)偶數(shù),
所以由1開(kāi)始的第1000個(gè)數(shù)是:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,長(zhǎng)半軸長(zhǎng)為短軸長(zhǎng)的b倍,A,B分別為橢圓C的上、下頂點(diǎn),點(diǎn).
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點(diǎn)分別為P,Q,證明:直線PQ過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的左、右焦點(diǎn)分別為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖所示,過(guò)橢圓的左焦點(diǎn)作直線(斜率存在且不為0)交橢圓于兩點(diǎn),過(guò)右焦點(diǎn)作直線交橢圓于兩點(diǎn),且,直線交軸于點(diǎn),動(dòng)點(diǎn)(異于)在橢圓上運(yùn)動(dòng).
①證明: 為常數(shù);
②當(dāng)時(shí),利用上述結(jié)論求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每輪游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓是否出現(xiàn)音樂(lè)相互獨(dú)立.
(1)玩三輪游戲,至少有一輪出現(xiàn)音樂(lè)的概率是多少?
(2)設(shè)每輪游戲獲得的分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中,底面是正方形,且, .
(1)求證: ;
(2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如表所示:
試銷(xiāo)單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷(xiāo)量(件) | 84 | 83 | 80 | 75 | 68 |
已知.
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量(件)關(guān)于試銷(xiāo)單價(jià)(元)的線性回歸方程;可供選擇的數(shù)據(jù):,;
(3)用表示用(2)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值.當(dāng)銷(xiāo)售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷(xiāo)售數(shù)據(jù)稱(chēng)為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷(xiāo)售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)圖像在處的切線方程;
(2)證明:;
(3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com