【題目】已知函數f(x)=cosx(acosx﹣sinx)(a∈R),且f ().
(1)求a的值;
(2)求f(x)的單調遞增區(qū)間;
(3)求f(x)在區(qū)間[0,]上的最小值及對應的x的值.
【答案】(1);(2);(3)時,取得最小值
【解析】
(1)代入數據計算得到答案.
(2)化簡得到,計算得到答案.
(3)計算2x∈[,],再計算最值得到答案.
(1)∵f(x)=cosx(acosx﹣sinx)(a∈R),且f ().
∴f ()().解得a.
(2)由(1)可得f(x)=cosx(cosx﹣sinx)cos2x﹣sinxcosxsin2xcos(2x),
令2kπ+π≤2x2kπ+2π,k∈Z,解得:kπx≤kπ,k∈Z,
可得f(x)的單調遞增區(qū)間為:[kπ,kπ],k∈Z,
(3)∵x∈[0,],可得:2x∈[,],
∴當2xπ,即x時,f(x)=cos(2x)取得最小值為﹣1.
科目:高中數學 來源: 題型:
【題目】以下三個關于圓錐曲線的命題中:
①設為兩個定點,為非零常數,若,則動點的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點;
④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若存在區(qū)間M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數f(x)的一個“穩(wěn)定區(qū)間,給出下列四個函數:
①f(x),②f(x)=x3,③f(x)=cosx,④f(x)=tanx
其中存在“穩(wěn)定區(qū)間”的函數有( )
A.①②③B.②③C.③④D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點的直線與中心在原點,焦點在軸上且離心率為的橢圓相交于、兩點,直線過線段的中點,同時橢圓上存在一點與右焦點關于直線對稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an=logn+1(n+2)(n∈N*)定義使a1a2…ak為整數的數k叫做企盼數,則區(qū)間[1,2019]內所有的企盼數的和是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一個正方形花圃被分成5份.
(1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com