精英家教網 > 高中數學 > 題目詳情
如圖,△ABC內接于⊙O,AB=AC,點D在⊙O上,AD⊥AB,AD交BC于點E,點F在DA的延長線上,AF=AE,求證:
(Ⅰ)BF是⊙O的切線;
(Ⅱ)BE2=AE•DF.
考點:與圓有關的比例線段,圓的切線的判定定理的證明
專題:選作題,立體幾何
分析:(1)連接BD,證明BF是⊙O的切線,只需證明∠FBD=90°;
(2)由切割線定理可得BF2=AF•DF,利用AF=AE,BE=BF,可得結論.
解答: 證明:(1)連接BD,則
∵AD⊥AB,
∴BD是⊙O的直徑,
∵AF=AE,
∴∠FBA=∠EBA,
∵AB=AC,
∴∠FBA=∠C,
∵∠C=∠D,∠D+∠ABD=90°,
∴∠FBA+∠ABD=90°,即∠FBD=90°,
∴BF是⊙O的切線;
(2)由切割線定理可得BF2=AF•DF,
∵AF=AE,BE=BF,
∴BE2=AE•DF.
點評:本題考查圓的切線的判斷,考查切割線定理,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|).
(1)求實數a,b的值;
(2)若不等式f(log2k)>f(2)成立,求實數k的取值范圍;
(3)對于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自變量x0,x1,x2,…,xn,如果存在一個常數M>0,使得定義在區(qū)間[p,q]上的一個函數m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱函數m(x)為區(qū)間[p,q]上的有界變差函數.試判斷函數f(x)是否區(qū)間[1,3]上的有界變差函數,若是,求出M的最小值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

復數z=(1-i)a2-3a+2+i(a∈R),
(1)若z=
.
z
,求|z|;
(2)若在復平面內復數z對應的點在第一象限,求a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a3=12,S3=36.
(1)求數列{an}的通項公式;
(2)求數列{nan}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn=2an-n(其中n∈N*).
(1)求證:數列{an+1}是等比數列,并求數列{an}的通項公式;
(2)若bn=
log2(an+1)
2n
,且Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

圓M和圓P:x2+y2-2
2
x-10=0相內切,且過定點Q(-
2
,0).
(Ⅰ)求動圓圓心M的軌跡方程;
(Ⅱ)斜率為
3
的直線l與動圓圓心M的軌跡交于A、B兩點,且線段AB的垂直平分線經過點(0,-
1
2
),求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)證明:|a+b|+|a-b|≥2|a|,并說明等號成立的條件;
(2)若不等式|a+b|+|a-b|≥|a|(|x-2|+|x-3|)對任意的實數a(a≠0)和b恒成立,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下四個命題:
①已知命題p:?x∈R,tanx=2;命題q:?x∈R,x2-x+1≥0.則命題p∧q是真命題;
②圓C1:x2+y2+2x=0與圓C2:x2+y2+2y-1=0恰有2條公切線;
③在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內取值的概率為0.4,則ξ在(0,2)內取值的概率為0.8;
④某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員抽出20人.
其中正確命題的序號為
 
(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知cos2α=
-4
5
,sin2α>0,且tan(2α+θ)=1,則sinθ-cosθ=
 

查看答案和解析>>

同步練習冊答案