精英家教網 > 高中數學 > 題目詳情
一個球的體積、表面積分別為V,S,若函數Vf(S),f′(S)是f(S)的導函數,則f′(π)=(  )
A.B.C.1D.π
A
設球的半徑為r,則S=4πr2,Vπr3,由S=4πr2,得r,所以f(S)=V,所以f′(S)=,所以f′(π)=.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)求函數的單調遞增區(qū)間;
(2)若關于的方程在區(qū)間內恰有兩個相異的實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求函數的單調遞增區(qū)間;
(2)記函數的圖象為曲線,設點是曲線上的不同兩點.如果在曲線上存在點,使得:①;②曲線在點處的切線平行于直線,則稱函數存在“中值相依切線”,試問:函數是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義在R上的函數同時滿足以下條件:
在(0,1)上是減函數,在(1,+∞)上是增函數;
是偶函數;
在x=0處的切線與直線y=x+2垂直.
(1)求函數的解析式;
(2)設g(x)=,若存在實數x∈[1,e],使g(x)<,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,求函數的單調區(qū)間;
(2)若以函數圖像上任意一點為切點的切線的斜率恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業(yè)園區(qū)的最大面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x3-x2+ax-a(a∈R).
(1)當a=-3時,求函數f(x)的極值.
(2)若函數f(x)的圖象與x軸有且只有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=x2+aln(x+1)有兩個極值點x1,x2,且x1<x2.
(1)求實數a的取值范圍;
(2)當a=時,判斷方程f(x)=-的實數根的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)的導數為,且,則___.

查看答案和解析>>

同步練習冊答案