(本題滿分14分)

如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn)。

(I)求證:A1B1//平面ABD;

(II)求證:AB⊥CE;

(III)求三棱錐C-ABE的體積。

 

【答案】

(Ⅰ)證明:見(jiàn)解析;(Ⅱ)見(jiàn)解析;

(Ⅲ) 。

【解析】本題給出所有棱長(zhǎng)都相等的正三棱柱,求證線面平行并求三棱錐的體積,著重考查了線面垂直的判定與性質(zhì)、線面平行的判定和柱體錐體的體積公式等知識(shí),屬于中檔題.

(I)根據(jù)三棱柱的側(cè)面ABB1A1是平行四邊形,得A1B1∥AB,再結(jié)合線面平行的判定定理,可得A1B1∥平面ABD;

(II)取AB中點(diǎn)F,連接EF、CF.根據(jù)線面垂直的性質(zhì)證出EF⊥AB,結(jié)合正△ABC中,中線CF⊥AB,所以AB⊥平面CEF,從而可得AB⊥CE;

(III)由三棱錐E-ABC與三棱柱ABC-A1B1C1同底等高,得三棱錐E-ABC的體積等于正三棱柱ABC-A1B1C1體積的 ,求出正三棱柱ABC-A1B1C1體積,從而得出三棱錐E-ABC的體積,即得三棱錐C-ABE的體積.

解:(Ⅰ)證明:由正三木棱住的性質(zhì)知∥AB,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111915572647266783/SYS201211191558482851984602_DA.files/image005.png">,

所以∥平面ABD.……………………………………4分

(Ⅱ)設(shè)AB中點(diǎn)為G,連結(jié)GE,GC。

又EG∥,

…………………………9分

(Ⅲ)由題意可知:

………………………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過(guò)垂直軸于,動(dòng)點(diǎn)滿足。

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案