解下列不等式:
(1)x2-5x-6>0;
(2)1+2x-x2≥0;
(3)|2x-1|>3.
考點:絕對值不等式的解法,一元二次不等式的解法
專題:計算題,不等式的解法及應(yīng)用
分析:(1)運用因式分解,再由二次函數(shù)的圖象可知,解集介于兩根之外;
(2)運用配方,再由絕對值不等式的解集,即可得到;
(3)直接運用絕對值不等式的解集,即可得到.
解答: 解:(1)x2-5x-6>0即為(x-6)(x+1)>0,
解得,x>6或x<-1.
則不等式的解集為{x|x>6或x<-1};
(2)1+2x-x2≥0即為x2-2x-1≤0,
即(x-1)2≤2,解得,1-
2
≤x≤1+
2

則不等式的解集為{x|1-
2
≤x≤1+
2
};
(3)|2x-1|>3即為2x-1>3或2x-1<-3,
解得,x>2或x<-1.
則不等式的解集為{x|x>2或x<-1}.
點評:本題考查一元二次不等式和絕對值不等式的解法,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在相同條件下,種植甲、乙兩種水稻各100畝,收獲情況如下:
甲種水稻
畝產(chǎn)量/kg300320330340
畝數(shù)15303520
乙種水稻
畝產(chǎn)量/kg300320330340
畝數(shù)20254015
試運用所學(xué)知識評價哪種水稻的質(zhì)量更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個棱長為2的正四面體ABCD的兩個頂點A,B分別在一個直角(∠EOF)的兩邊OE,OF上運動,M是棱CD的中點,設(shè)點M與O點的距離為d,則d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=
1
2
AD=1,CD=
3
.        
(Ⅰ) 求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB,M是PB的中點
(Ⅰ)求直線AC與直線PB所成的角的余弦值;
(Ⅱ)求直線AB與面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一個邊長為2的正方形中隨機撒入200粒的豆子,恰有120粒落在陰影區(qū)域里,則該陰影部分的面積約為( 。
A、
3
5
B、
12
5
C、
6
5
D、
18
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,且點B到橢圓兩個焦點的距離之和為4.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)A為橢圓的左頂點,直線AB交y軸于點C,過C作直線l交橢圓于D、E兩點,問:是否存在直線l,使得△CBD與△CAE的面積之比為1:7,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

OP1
=
a
,
OP2
=
b
P1P
PP2
(λ≠-1),試用
a
,
b
表示
OP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx+
1
2
的零點所在的區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案