【題目】已知等比數(shù)列{an}的公比q≠1,則下面說法中不正確的是( )
A.{an+2+an}是等比數(shù)列
B.對于k∈N* , k>1,ak﹣1+ak+1≠2ak
C.對于n∈N* , 都有anan+2>0
D.若a2>a1 , 則對于任意n∈N* , 都有an+1>an
【答案】D
【解析】解:對于A,{an+2+an}是公比為q2的等比數(shù)列,正確;
對于B,對于k∈N* , k>1,ak﹣1+ak+1= +akq,∵q≠1,∴ak﹣1+ak+1≠2ak , 正確‘
對于C,anan+2=an2q2>0,正確;
對于D,若a2>a1 , a>1,則對于任意n∈N* , 都有an+1>an , 故不正確,
故選:D.
【考點精析】利用等比數(shù)列的基本性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知{an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為16分)為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:
,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償.
(1)當(dāng)x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)在邊長為1的正方形ABCD內(nèi)任取一點M,求事件“|AM|≤1”的概率;
(2)某班在一次數(shù)學(xué)活動中,老師讓全班56名同學(xué)每人隨機寫下一對都小于1的正實數(shù)x、y,統(tǒng)計出兩數(shù)能與1構(gòu)成銳角三角形的三邊長的數(shù)對(x,y)共有12對,請據(jù)此估計π的近似值(精確到0.001).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實數(shù)a,m的值.
(2)當(dāng)a=2且0≤t<2時,解關(guān)于x的不等式f(x)+t≥f(x+2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為16分)已知函數(shù).
(1)若,求函數(shù)的極值,并指出極大值還是極小值;
(2)若,求函數(shù)在上的最值;
(3)若,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 ﹣ =1與直線y=2x+m有兩個交點,則m的取值范圍是( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分16分)已知函數(shù), .
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若直線是函數(shù)圖象的切線,求的最小值;
(3)當(dāng)時,若與的圖象有兩個交點,求證: .(取為,取為,取為)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com