【題目】.已知函數(shù).
(1)求過點的圖象的切線方程;
(2)若函數(shù)存在兩個極值點, ,求的取值范圍;
(3)當時,均有恒成立,求的取值范圍.
【答案】(1) (2) (3)
【解析】試題分析:(1)設(shè)切點坐標為,則切線方程為 ,根據(jù)點坐標,即可求出,從而得到切線方程;(2)對求導(dǎo),令,要使存在兩個極值點, ,則方程有兩個不相等的正數(shù)根,從而只需滿足即可;(3)由在上恒成立可得在上恒成立,令,求出的單調(diào)性,可得出的最大值,即可求得的取值范圍.
試題解析:(1)由題意得,函數(shù)的定義域為,
設(shè)切點坐標為,則切線方程為
把點代入切線方程,得: ,
過點的切線方程為:
(2)∵
∴
令
要使存在兩個極值點, ,則方程有兩個不相等的正數(shù)根.
又, .
故只需滿足即可
解得:
(3)由于在上恒成立.
∴在上恒成立.
令
則
當時,
令,則
在上單調(diào)遞增
又,
∴存在便得,即,
故當時, ,此時
當時, 此時.
故函數(shù)在上遞增,在上遞減
從而:
令,
則
在上單調(diào)遞增,
∴
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–1、0),
F2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結(jié)AF1并延長交圓F2于點B,連結(jié)BF2交橢圓C于點E,連結(jié)DF1.已知DF1=.
(1)求橢圓C的標準方程;
(2)求點E的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,且過點.直線與交于,兩點,點是的左焦點.
(1)求橢圓的方程;
(2)若過點且不與軸重合,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若是函數(shù)的一個極值點,求實數(shù)的值.
()設(shè),當時,函數(shù)的圖象恒不在直線的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是直角梯形,其中,,.點是的中點,將沿折起如圖,使得平面.點、分別是線段、的中點.
(1)求證:;
(2)求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②;
③是;
④平面平面;
⑤直線與平面所成角為30°.
其中正確的有________.(填寫你認為正確的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的圖象關(guān)于軸對稱,頂點在坐標原點,點在拋物線上.
(1)求拋物線的標準方程;
(2)設(shè)直線的方程為,若直線與拋物線交于兩點,且以為直徑的圓過點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在點處的切線的斜率;
(2)討論函數(shù)的單調(diào)性;
(3)當函數(shù)有極值時,若對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com