一個盒子中裝有四張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是1,2,3,4.現(xiàn)在從盒子中隨機抽取卡片.
(Ⅰ)若以此抽取三張卡片,求抽取的三張卡片上數(shù)字之和大于6的概率;
(Ⅱ)若第一次抽取一張卡片,放回后在抽取一張卡片,求兩次抽取中至少一次抽到數(shù)字3的概率.
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(Ⅰ)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果,可以列舉出,而滿足條件的事件數(shù)字之和大于7的,可以從列舉出的結(jié)果中看出.
(Ⅱ)列舉出每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果,而滿足條件的事件是兩次抽取中至少一次抽到數(shù)字3,從前面列舉出的結(jié)果中找出來
解答: 解:(Ⅰ)由題意知本題是一個古典概型,
設(shè)A表示事件“抽取3張卡片上的數(shù)字之和大于6”,
∵任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),
其中數(shù)字之和大于6的是(1,2,4),(1、3、4),(2、3、4),
∴所求事件的概率為P(A)=
3
4

(Ⅱ)設(shè)B表示事件“至少一次抽到3”,
∵每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果有:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個基本結(jié)果.
事件B包含的基本結(jié)果有(1、3)(2、3)(3、1)(3、2)(3、3)(3、4)(4、3),共7個基本結(jié)果.
∴所求事件的概率為P(B)=
7
16
點評:本題主要考查了古典概型問題,要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N,常數(shù)p,q均大于1,且都不等于2,則
lim
n→∞
pn+1-qn
pn+2-2qn+1
=( 。
A、
1
p
1
2q
B、-
1
p
或-
1
2q
C、
1
p
1
2q
p-1
p2-2q
D、-
1
p
或-
1
2q
p-1
p2-2q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+lnx和g(x)=x+
a2
x

(1)求f(x)在(1,f(1))處的切線方程.
(2)當(dāng)a≠0時,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

今年雙十一,淘寶網(wǎng)站一天的銷售記錄震驚全球,網(wǎng)購已經(jīng)成為人們消費的主要形式之一.假設(shè)一淘寶網(wǎng)店出售某商品,根據(jù)人們的咨詢量預(yù)估成交額y(千元)與售價x(千元)之間滿足關(guān)系y=ax2-lnx+2(x∈(0,1))(a>
1
2e
)
,而由于價格原因未能交易成功的成交額m(千元)與售價x(千元)之間滿足關(guān)系m=x,記實際成交額為f(x).
(1)若發(fā)現(xiàn)該商品的實際成交額一直下降,求此時a的取值范圍;
(2)證明:只要實際成交額能出現(xiàn)上升趨勢,則實際成交額一定不會小于2(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|ax+1|,a≠0,不等式f(x)≤3的解集是{x|-1≤x≤2}
(1)求a的值;
(2)若g(x)=
f(x)+f(-x)
2
,g(x)<|k|存在實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x-1|-|x+4|.
(Ⅰ)解不等式:f(x)>0;
(Ⅱ)若f(x)+3|x+4|≥|a-1|對一切實數(shù)x均成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)若對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex•|lnx|-1的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=c+1,a>b>c,則M=
1
a-b
+
2
b-c
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案