若兩個球的表面積之比為,則這兩個球的體積之比為( 。
A.B.C.D.
C

試題分析:球的面積之比等于半徑比的平方,所以半徑之比為,球的體積之比等于半徑比的立方,所以體積之比為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,, 沿平面把這個長方體截成兩個幾何體: 幾何體(1);幾何體(2)

(I)設幾何體(1)、幾何體(2)的體積分為是,求的比值
(II)在幾何體(2)中,求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,矩形的對角線交于點G,AD⊥平面,上的點,且BF⊥平面ACE

(1)求證:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱錐中,是邊長為的正三角形,平面⊥平面,分別為、的中點.

(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

球的表面積與它的內(nèi)接正方體的表面積之比是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱柱種側棱垂直于底面,,,且三棱柱的體積為3,則三棱柱的外接球的表面積為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點,EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是(    )

A.                  B.            C.        D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在單位正方體的面對角線上存在一點P使得最短,則的最小值           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正四棱錐的底邊和側棱長均為,則該正四棱錐的外接球的表面積為         .

查看答案和解析>>

同步練習冊答案