如圖,正三棱柱ABC-A1B1C1中,E是AC中點(diǎn).
(Ⅰ)求證:AB1∥平面BEC1;
(Ⅱ)若,AB=2,AA1=數(shù)學(xué)公式,求點(diǎn)A到平面BEC1的距離;
(Ⅲ)當(dāng)數(shù)學(xué)公式為何值時(shí),二面角E-BC1-C的正弦值為數(shù)學(xué)公式?

(Ⅰ)證明:連接B1C交BC1于點(diǎn)F,連接EF,則F為B1C的中點(diǎn)

∵E是AC中點(diǎn),∴EF∥AB1,
∵AB1?平面BEC1,EF?平面BEC1,
∴AB1∥平面BEC1
(Ⅱ)解:由題意知,點(diǎn)A到平面BEC1的距離即點(diǎn)C到平面BEC1的距離
∵ABC-A1B1C1是正三棱柱
∴BE⊥平面ACC1A1,
∵BE?平面BEC1,
∴平面BEC1⊥平面ACC1A1
過(guò)點(diǎn)C作CH⊥C1E于點(diǎn)H,則CH⊥平面BEC1,∴CH為點(diǎn)C到平面BEC1的距離
在直角△CEC1中,CE=1,CC1=,C1E=,∴由等面積可得CH=
∴點(diǎn)A到平面BEC1的距離為;
(Ⅲ)解:過(guò)H作HG⊥BC1于G,連接CG,由三垂線定理得CG⊥BC1,故∠CGH為二面角E-BC1-C的平面角
當(dāng)AA1=2a,AB=b時(shí),

∴在直角△CGH中,sin∠CGH===
∴b=2a
==1
=1時(shí),二面角E-BC1-C的正弦值為
分析:(Ⅰ)連接B1C交BC1于點(diǎn)F,連接EF,則F為B1C的中點(diǎn),根據(jù)E是AC中點(diǎn),可得EF∥AB1,從而可證AB1∥平面BEC1
(Ⅱ)由題意知,點(diǎn)A到平面BEC1的距離即點(diǎn)C到平面BEC1的距離,過(guò)點(diǎn)C作CH⊥C1E于點(diǎn)H,則可證CH⊥平面BEC1,故CH為點(diǎn)C到平面BEC1的距離,由等面積可得結(jié)論;
(Ⅲ)過(guò)H作HG⊥BC1于G,連接CG,由三垂線定理得CG⊥BC1,故∠CGH為二面角E-BC1-C的平面角,求出CH、CG,利用二面角E-BC1-C的正弦值為,即可求得結(jié)論.
點(diǎn)評(píng):本題考查線面平行,考查點(diǎn)到面的距離,考查面面角,解題的關(guān)鍵是掌握線面平行的判定,正確作出表示點(diǎn)面距離的線段,正確作出面面角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長(zhǎng)都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長(zhǎng)是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動(dòng)點(diǎn),當(dāng)OD∥平面ABC時(shí),求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案