已知點(diǎn)P是圓F1上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長(zhǎng)HK到點(diǎn)Q使得HK=KQ,連接AQ延長(zhǎng)交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.
【答案】分析:(1)先確定F1、F2的坐標(biāo),再根據(jù)線段PF2的中垂線與PF1交于M點(diǎn),結(jié)合橢圓的定義,可得點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的橢圓,從而可得點(diǎn)M的軌跡C的方程;
(2)先確定Q點(diǎn)在以AB為直徑的圓O上,再驗(yàn)證,即可知直線QN與圓O相切.
解答:解:(1)由題意得,(1分)
圓F1的半徑為4,且|MF2|=|MP|(2分)
從而(3分)
∴點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的橢圓,其中長(zhǎng)軸2a=4,焦距,
則短半軸,(4分)
橢圓方程為:(5分)
(2)設(shè)K(x,y),則
∵HK=KQ,∴Q(x,2y).∴(6分)
∴Q點(diǎn)在以O(shè)為圓心,2為半徑的圓上.即Q點(diǎn)在以AB為直徑的圓O上.(7分)
又A(-2,0),∴直線AQ的方程為.                      (8分)
令x=2,得.                                            (9分)
又B(2,0),N為DB的中點(diǎn),∴.                          (10分)
.                               (11分)

=x(x-2)+x(2-x)=0.                                          (13分)
.∴直線QN與圓O相切.(14分)
點(diǎn)評(píng):本題以圓的方程為載體,考查橢圓的定義與標(biāo)準(zhǔn)方程,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用橢圓的定義判斷軌跡的類型,利用向量的數(shù)量積為0,判斷直線QN與圓O相切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•惠州模擬)已知點(diǎn)P是圓F1:(x+1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P,Q兩點(diǎn),若
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)),試求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓F1:(x+1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為1的直線l與曲線C交于A,B兩點(diǎn),若
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•肇慶二模)已知點(diǎn)P是圓F1(x+
3
)2+y2=16
上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長(zhǎng)HK到點(diǎn)Q使得HK=KQ,連接AQ延長(zhǎng)交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣東省肇慶市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P是圓F1上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長(zhǎng)HK到點(diǎn)Q使得HK=KQ,連接AQ延長(zhǎng)交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案