設(shè)不等式組
0≤x≤6
0≤y≤6
表示區(qū)域?yàn)锳,不等式x2+y2≤9表示區(qū)域B,
0≤x≤6
x-y≥0
表示區(qū)域C.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈C的概率;
(3)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域C中的概率.
考點(diǎn):幾何概型
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)本小題是幾何概型問(wèn)題,欲求點(diǎn)(x,y)∈B的概率,只須求出區(qū)域B的面積,再將求得的面積值與整個(gè)區(qū)域的面積求比值即得
(2)本小題是幾何概型問(wèn)題,欲求點(diǎn)(x,y)∈C的概率,只須求出區(qū)域C的面積,再將求得的面積值與整個(gè)區(qū)域的面積求比值即得.
(3)本小題是古典概型問(wèn)題,欲求點(diǎn)(x,y)在區(qū)域B中的概率,只須求出滿(mǎn)足:使在區(qū)域B中的點(diǎn)(x,y)有多少個(gè),再將求得的值與抽取的全部結(jié)果的個(gè)數(shù)36求比值即得.
解答: 解:(1)設(shè)集合A中的點(diǎn)(x,y)∈B為事件D,區(qū)域A的面積為S1=36,區(qū)域B的面積為S2=
1
4
π•9
=
4

∴P(D)=
4
36
=
π
16
;
(2)設(shè)集合A中的點(diǎn)(x,y)∈C為事件M,區(qū)域A的面積為S1=36,區(qū)域C的面積為S2=18,∴P(M)=
18
36
=
1
2
;
(3)設(shè)點(diǎn)(x,y)在區(qū)域B為事件N,甲、乙兩人各擲一次骰子所得的點(diǎn)(x,y)的個(gè)數(shù)為36個(gè),其中在區(qū)域B中的點(diǎn)(x,y)有21個(gè),故P(N)=
21
36
=
7
12
點(diǎn)評(píng):本小題主要考查古典概型、幾何概型等基礎(chǔ)知識(shí).古典概型與幾何概型的主要區(qū)別在于:幾何概型是另一類(lèi)等可能概型,它與古典概型的區(qū)別在于試驗(yàn)的結(jié)果不是有限個(gè),幾何概型的特點(diǎn)有下面兩個(gè):(1)試驗(yàn)中所有可能出現(xiàn)的基本事件有無(wú)限多個(gè).(2)每個(gè)基本事件出現(xiàn)的可能性相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四個(gè)同學(xué),爭(zhēng)奪三項(xiàng)冠軍,冠軍獲得者可能有的種類(lèi)是( 。
A、4
B、24
C、43
D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+lnx的導(dǎo)數(shù)為(  )
A、f′(x)=2x+ex
B、f′(x)=2x+lnx
C、f′(x)=2x+
1
x
D、f′(x)=2x-
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
3
)(A>0,ω>0)與y=-sinx的圖象關(guān)于一直線(xiàn)對(duì)稱(chēng).
(Ⅰ)求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)+m=0在區(qū)間[0,
π
2
]上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,游樂(lè)場(chǎng)中的摩天輪勻速旋轉(zhuǎn),其最低點(diǎn)離地面5米,如果以你從最低點(diǎn)登上摩天輪的時(shí)刻開(kāi)始計(jì)時(shí),那么你與地面的距離y(m)隨時(shí)間x(min)變化的關(guān)系將如圖2所示(該圖象近似于y=Asin(ωx+φ)+b(A>0,ω>0,-π≤φ≤0)的圖象).

(Ⅰ)求出y(m)和x(min)的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)你第三次距離地面65米時(shí),用了多少時(shí)間?
(Ⅲ)當(dāng)你登上摩天輪4分鐘后,你的朋友也在最低點(diǎn)登上摩天輪,請(qǐng)直接寫(xiě)出你登上摩天輪多少分鐘后,第一次與你的朋友處在同一高度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求使等式[
12
24
]=[
10
02
]M[
10
0-1
]成立的矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意函數(shù)f(x),其定義域?yàn)镈,可按如圖所示,構(gòu)造一個(gè)數(shù)列發(fā)生器,要求輸入初始數(shù)據(jù)x0∈D,現(xiàn)定義f(x)=
4x-2
x+1
,解答以下問(wèn)題:
(1)若輸入x0=
49
65
,則由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn},寫(xiě)出{xn}的所有項(xiàng);
(2)若要數(shù)列發(fā)生器產(chǎn)生一個(gè)無(wú)窮的常數(shù)列,試求輸入的初始數(shù)據(jù)x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)某設(shè)備的使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)之間有如下的統(tǒng)計(jì)數(shù)據(jù):
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
(1)求y與x之間的回歸直線(xiàn)方程;(參考數(shù)據(jù):22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?
附:線(xiàn)性回歸方程
y
=
b
x+
a
中系數(shù)計(jì)算公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知B=
π
3
,AC=4
3
,D為BC邊上一點(diǎn).
(1)設(shè)AB=3
3
,且AD為∠A的內(nèi)角平分線(xiàn),若
AD
AB
AC
,求λ、μ的值
(2)若AB=AD,試求△ADC的周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案