已知函數(shù)在區(qū)間上為單調(diào)增函數(shù),求的取值范圍.

解析試題分析:由函數(shù)在區(qū)間內(nèi)單調(diào)遞減,轉(zhuǎn)化成內(nèi)恒成立,利用參數(shù)分離法即可求出a的范圍.
解: 
因為在區(qū)間上單調(diào)遞增,
所以對任意恒成立
,
對任意恒成立
設(shè),則,
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,,其中。
(1)若的圖像在交點(2,)處的切線互相垂直,
的值;
(2)若是函數(shù)的一個極值點,和1是的兩個零點,
∈(,求;
(3)當時,若,的兩個極值點,當||>1時,
求證:||

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,把邊長為10的正六邊形紙板剪去相同的六個角,做成一個底面為正六邊形的無蓋六棱柱盒子,設(shè)其高為h,體積為V(不計接縫).
(1)求出體積V與高h的函數(shù)關(guān)系式并指出其定義域;
(2)問當為多少時,體積V最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若,求函數(shù)在[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)定義在上,,導(dǎo)函數(shù),
(1)求的單調(diào)區(qū)間和最小值;
(2)討論的大小關(guān)系;
(3)是否存在,使得對任意成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)上的單調(diào)性;
(2)當時,曲線上總存在相異兩點,,,使得曲線在、處的切線互相平行,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)討論函數(shù)的極值點;
(2)若對任意的,恒有,求的取值范圍.

查看答案和解析>>

同步練習冊答案