1、下列命題:①?x∈R,x2+2>0;②?x∈N,x4≥1;③?x∈Z,x3<1;④?x∈Z,x2≠3;其中假命題的序號是
分析:對②和③取特殊值進行判斷;①和④可以直接進行判斷.
解答:解:①?x∈R,x2+2>0是真命題,
②當x=0∈N,則x4=0<1,故②是假命題;
③當x=0∈Z,則x3=0<1,故③是真命題;
④?x∈Z,x2≠3是真命題
故答案為:②.
點評:本題考查四種命題的真假關系及其判斷,解題時要注意配方法、特殊值法和不等式性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列命題:①?x∈R,2x2-3x+4>0;②?x∈{1,-1,0},2x+1>0;③?x∈N,使x2≤x;④若x<1,則x≤1.其中是真命題的共有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①?x∈R,x3>x
②若“p∧q”是真命題,則“p∨q”也是真命題;
③命題“?x∈R,x3-2x2+1≤0”的否定是“?x∈R,x3-2x2+1>0”
④命題“若am2<bm2,則a<b”的逆命題是真命題.其中真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:①?x∈R,且x≠0,x+
1
x
≥2
;②?x∈R,x2+1≤2x;③若x>0,y>0,則
x2+y2
2
2xy
x+y
.其中所有真命題的序號是
②③
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
①?x∈R,|x-1|+|x+2|>2;
②命題p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0;
③“x>2”是“x2-3x+2>0”的充分不必要條件;
④已知隨機變量P~N(2,σ2),P(ξ<4)=0.6,則P(0<ξ<2)=0.1,
其中真命題有(  )

查看答案和解析>>

同步練習冊答案