【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實(shí)根,求f(x)的解析式.
【答案】解:設(shè)f(x)=ax2+bx+c,由f(x)>﹣x,可得ax2+(b+1)x+c>0,∵f(x)>﹣x的解集為{x|1<x<2},
∴ ,解得 ,
∴f(x)=ax2﹣(3a+1)x+2a.
∵f(x)+2a=0,即ax2﹣(3a+1)x+4a=0有兩相等實(shí)根,
∴△=(3a+1)2﹣16a2=0,解得a=1舍去或 .④
由①②③④得: , , .
∴
【解析】設(shè)f(x)=ax2+bx+c,由f(x)>﹣x,可得ax2+(b+1)x+c>0,由f(x)>﹣x的解集為{x|1<x<2},列出不等式組,求解即可得a,b,c的關(guān)系式,再由f(x)+2a=0求出a的值,結(jié)合a,b,c的關(guān)系式即可得答案.
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法是解答本題的根本,需要知道求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)平面直角坐標(biāo)系中,傾斜角為的直線過(guò)點(diǎn),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標(biāo)方程;
(2)若直線與交于、兩點(diǎn),且,求傾斜角的值.
(Ⅱ)已知函數(shù).
(1)若函數(shù)的最小值為5,求實(shí)數(shù)的值;
(2)求使得不等式成立的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ) 求曲線與交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)分別在曲線, 上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):R(x)= ,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))
(1)將利潤(rùn)x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,底面是邊長(zhǎng)為2的菱形, ,四邊形是矩形,平面平面.
(1)在圖中畫出過(guò)點(diǎn)的平面,使得平面(必須說(shuō)明畫法,不需證明);
(2)若二面角是,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的鋼板的邊界是拋物線的一部分,且垂直于拋物線對(duì)稱軸,現(xiàn)欲從鋼板上截取一塊以為下底邊的等腰梯形鋼板,其中均在拋物線弧上.設(shè)(米),且.
(1)當(dāng)時(shí),求等腰梯形鋼板的面積;
(2)當(dāng)為何值時(shí),等腰梯形鋼板的面積最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)f(x)是R上的增函數(shù),已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)單調(diào)遞增,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)x∈[﹣1,3]時(shí),g(x)有最大值13,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意實(shí)數(shù)x,[x]表示不超過(guò)x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=
(1)求f(﹣2);
(2)當(dāng)x<﹣3時(shí),求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[﹣5,5]上的最大值為g(a),試求g(a)的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com