如圖,過圓O外一點(diǎn)P作該圓的兩條割線PAB和PCD,分別交圓O于點(diǎn)A,B,C,D,弦AD和BC交于點(diǎn)Q,割線PEF經(jīng)過點(diǎn)Q交圓O于點(diǎn)E,F,點(diǎn)M在EF上,且∠BAD=∠BMF.
(1)求證:PA·PB=PM·PQ;
(2)求證:∠BMD=∠BOD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時(shí)集12講練習(xí)卷(解析版) 題型:選擇題
設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列為真命題的是( )
A.若α⊥β,m⊥α,則m∥β B.若α⊥γ,β⊥γ,則α∥β
C.若m⊥α,n∥m,則n⊥α D.若m∥α,n∥α,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講練習(xí)卷(解析版) 題型:解答題
已知a≥b>0,求證:2a3-b3≥2ab2-a2b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
在極坐標(biāo)系中,曲線C:ρ=msin θ(m>0),若極軸上的點(diǎn)P(2,0)與曲線C上任意兩點(diǎn)的連線所成的最大夾角是,則m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,若直線l1: (s為參數(shù))和直線l2: (t為參數(shù))平行,則常數(shù)a的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知四棱錐P-ABCD的正視圖是一個(gè)底邊長為4,腰長為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)y=f(x)的圖象關(guān)于直線x=-1對稱,且當(dāng)x∈(0,+∞)時(shí),有f(x)=,則當(dāng)x∈(-∞,-2)時(shí),f(x)的解析式為( )
(A)f(x)=- (B)f(x)=-
(C)f(x)= (D)f(x)=-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=的定義域?yàn)?/span>( )
(A)(0,+∞) (B)(1,+∞)
(C)(0,1) (D)(0,1)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com