(本小題滿分14分)
已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)的和為,且
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求證:;
(3)求數(shù)列的前項(xiàng)和.

解:(1)∵a3,a5是方程的兩根,且數(shù)列的公差>0,
a3=5,a5=9,公差                        ……………2分
                          ……………3分
又當(dāng)=1時(shí),有,   
.                                               ……………4分[
當(dāng),
                                       ……………5分
∴數(shù)列{}是首項(xiàng),公比等比數(shù)列,
                                ……………6分
(2)由(1)知               ……………8分

                                         ……………10分
(3),設(shè)數(shù)列的前項(xiàng)和為,
            (1)
       (2 )    ……………12分
得:

化簡(jiǎn)得:.                       ………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.已知各項(xiàng)均不為零的數(shù)列,定義向量,. 下列命題中真命題是
A.若總有成立,則數(shù)列是等差數(shù)列
B.若總有成立,則數(shù)列是等比數(shù)列
C.若總有成立,則數(shù)列是等差數(shù)列
D.若總有成立,則數(shù)列是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正項(xiàng)數(shù)列滿足:時(shí),。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對(duì)任意的恒成立?若存在,求出所有的正整數(shù)m;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足,,則(     )
A.27B.28C.29D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,對(duì),都有成立,
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列,試求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


已知數(shù)列是等差數(shù)列,,,為數(shù)列的前項(xiàng)和
(1)求;     
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖3所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,
它們是由整數(shù)的倒數(shù)組成的,第行有個(gè)數(shù)且兩端的數(shù)均為,每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如,,…,則第7行第4個(gè)數(shù)(從左往右數(shù))為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將正方形分割成個(gè)全等的小正方形(圖1,圖2分別給出了的情形),在每個(gè)小正方形的頂點(diǎn)各放置一個(gè)數(shù),使位于正方形的四邊及平行于某邊的任一直線上的數(shù)都分別依次成等差數(shù)列,若頂點(diǎn)處的四個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為,則
A.4         B.6      C.       . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn=(a+1)n2+a, 某三角形三邊之比為a2:a3:a4,則該三角形最大角為 ___ ▲   

查看答案和解析>>

同步練習(xí)冊(cè)答案