已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,求時(shí)速在[60,70]的汽車大約有多少輛?
考點(diǎn):頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)頻率分布直方圖,利用頻率、頻數(shù)與樣本容量的關(guān)系即可解答.
解答: 解:根據(jù)頻率分布直方圖,時(shí)速在[60,70]的汽車頻率是0.04×10=0.4,
∴時(shí)速在[60,70]的汽車頻數(shù)是200×0.4=80,
∴時(shí)速在[60,70]的汽車大約有80輛.
點(diǎn)評:本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率、頻數(shù)與樣本容量的應(yīng)用問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程是
x=t
y=t+a
(t為參數(shù),a為實(shí)數(shù)常數(shù)),曲線C2的參數(shù)方程是
x=-t
y=-t+b
(t為參數(shù),b為實(shí)數(shù)常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C3的極坐標(biāo)方程是ρ=1.若C1與C2分曲線C3所成長度相等的四段弧,則a2+b2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy內(nèi),過曲線C:xy=b(b,x>0)與直線ln:y=anx(an≠0,n∈N*)的交點(diǎn)作C的切線mn,以O(shè)為圓心,以直線mn在坐標(biāo)軸上的較長截距為半徑作圓O交曲線C于An,Bn兩點(diǎn),若直線mn的斜率an構(gòu)成數(shù)列{an}(n∈N*)且滿足:①ban+1=a2n②a1=1.問:
(Ⅰ)記使得∠AnOBn的大小不受到參數(shù)b的控制時(shí)的an=λ(非零常數(shù)),求an=λ時(shí)∠AnOBn的值;
(Ⅱ)證明:∠AnOBn不一定隨著n的增大而增大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<α<
π
2
<β<π,cos(β-
π
4
)=
5
13
,sin(α+β)=
4
5

(1)求sin2β;
(2)求cos(α+
π
4
);
(3)求cosβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
1+sin4α+cos4α
1+sin4α-cos4α

(2)
1
1-tanθ
-
1
1+tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)已知函數(shù)f(x)=x+
4
x
,其定義域?yàn)閧x∈R|x≠0},請指出它的單調(diào)區(qū)間;
(2)如果函數(shù)y=x+
3m
x
(x>0)的值域是[6,+∞),求實(shí)數(shù)m的值;
(3)若把函數(shù)f(x)=x2+
a
x2
(常數(shù)a>0)在[1,2]上的最小值記為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx(x≥1),g(x)=
1
f′(x)
+af′(x),
(1)當(dāng)a=4,g(x)的單調(diào)區(qū)間;
(2)g(x)的最小值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)若對任意x∈R,|x-a|+|x+1|≥3恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦距是2c,若以a,2b,c為三邊長必能構(gòu)成三角形,則該橢圓離心率的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案