如圖:(1)證明:PQ∥平面AA1B1B;
(2)求線段PQ的長。(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐V-ABCD中,∠BCD=∠BAD=90°,又∠BCV=∠BAV=90°,
求證:VD⊥AC;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正方體ABCD—中,E為棱CC上的動點,
(1)求證:
(2)當E恰為棱CC的中點時,求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直角所在平面外一點,且,點為斜邊的中點.
(1)  求證:平面;
(2)  若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知P、Q是棱長為a的正方體ABCD-A1B1C1D1的面AA1D1D和A1B1C1D1的中心.
(1)  求線段PQ的長;(2)證明:PQ∥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1B1N;
(Ⅱ)設直線C1N與平面CNB1所成的角為,求sin的值;
(Ⅲ)M為AB中點,在CB上是否存在一點P,使得MP∥平面CNB1,若存在,求出BP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCD—A1B1C1D1中,E、F、G分別是棱DA、DC、DD1的中點,試找出過正方體的三個頂點且與平面EFG平行的平面,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

a、b是兩條異面直線,則“a⊥b”是“存在經過a且與b垂直的平面”的
A.充分而不必要條件         B.必要而不充分條件
C.充要條件                既不充分也不必要條件

查看答案和解析>>

同步練習冊答案