如果二次函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),則另一個(gè)零點(diǎn)是

[  ]

A.3
B.-3
C.
D.
答案:A
解析:

由已知得0是方程的一個(gè)根,

m=3,

因此另一個(gè)零點(diǎn)為3


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知關(guān)于x的二次函數(shù)f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當(dāng)b=-2時(shí),由于對(duì)任意的x∈R,函數(shù)f(x)的值總大于零,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果方程f(x)=0有一個(gè)負(fù)根和一個(gè)不大于1的正根,求實(shí)數(shù)a,b滿(mǎn)足的條件,并在右圖所給坐標(biāo)系中畫(huà)出點(diǎn)(a,b)所在的平面區(qū)域;
(Ⅲ)在第(Ⅱ)問(wèn)的條件下,若實(shí)數(shù)k滿(mǎn)足b=k(a+1)+3,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=-2x2+2x,數(shù)列{an}滿(mǎn)足an+1=f(an).
(1)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(2)令bn=
1
2
-an
,試證明數(shù)列{lgbn+lg2}是等比數(shù)列
(3)已知,記Sn=log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)
,是否存在非零整數(shù)λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1對(duì)任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)f(x)=-2x2+2x,數(shù)列{an}滿(mǎn)足an+1=f(an).
(1)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(2)令數(shù)學(xué)公式,試證明數(shù)列{lgbn+lg2}是等比數(shù)列
(3)已知,記Sn=數(shù)學(xué)公式,是否存在非零整數(shù)λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1對(duì)任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省汕頭市金山中學(xué)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=-2x2+2x,數(shù)列{an}滿(mǎn)足an+1=f(an).
(1)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(2)令,試證明數(shù)列{lgbn+lg2}是等比數(shù)列
(3)已知,記Sn=,是否存在非零整數(shù)λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1對(duì)任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案