1.已知集合A={x|-1<x≤1},集合B={-1,1,3},則A∩B={1}.

分析 由集合的交集定義:A∩B={x|x∈A且x∈B},即可得到所求.

解答 解:集合A={x|-1<x≤1},集合B={-1,1,3},
則A∩B={1}.
故答案為:{1}.

點評 本題考查集合的運算,主要是交集的求法,注意運用定義法,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若P(2,1)為圓(x-1)2+y2=25的弦AB的中點,則直線AB的方程為( 。
A.2x+y-3=0B.x+y-1=0C.x+y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓錐的底面半徑為2,且它的側(cè)面展開圖是一個半圓,則這個圓錐的表面積為( 。
A.B.12πC.D.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在極坐標系中,以極點為坐標原點,極軸為x軸正半軸,建立直角坐標系,點M(2,$\frac{π}{6}}$)的直角坐標是($\sqrt{3},1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)g(x)=(-x2+5x-3)ex(e為自然對數(shù)的底數(shù)),求函數(shù)y=g(x)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,焦距為2.
(1)求橢圓的標準方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C相交于A,B兩點,且kOA•kOB=-$\frac{3}{4}$.
①求證:△AOB的面積為定值;
②橢圓C上是否存在一點P,使得四邊形OAPB為平行四邊形?若存在,求出點P橫坐標的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則在齊王的馬獲勝的條件下,齊王的上等馬獲勝的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U={x∈R|x>0},函數(shù)f(x)=$\frac{1}{\sqrt{lnx-1}}$的定義域為A,則∁UA為( 。
A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第x年與年銷量y(單位:萬件)之間的關(guān)系如表:
x1234
y12284256
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點圖擬合y與x的回歸模型,并用相關(guān)系數(shù)加以說明;
(Ⅲ)建立y關(guān)于x的回歸方程,預(yù)測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù):$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
參考公式:相關(guān)系數(shù)$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回歸方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估計公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

同步練習冊答案