.已知點(diǎn)A(-3,1,4),則點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)B的坐標(biāo)為            ;AB的長(zhǎng)為           .
(3,-1,-4)    2

試題分析:由空間坐標(biāo)系中點(diǎn)的對(duì)稱(chēng)原則:關(guān)于誰(shuí)對(duì)稱(chēng),誰(shuí)不變;知點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),各坐標(biāo)全要變?yōu)樵瓉?lái)的相反數(shù),所以點(diǎn)B的坐標(biāo)為(3,-1,-4);再由空間中兩點(diǎn)間的距離公式得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)已知二面角A­PB­D的余弦值為,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:直三棱柱(側(cè)棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足為D.

(1)求證:BC∥平面AB1C1;
(2)求點(diǎn)B1到面A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中點(diǎn)。
(1)求證:AC⊥平面BDE;
(2)若直線PA與平面PBC所成角為30°,求二面角P-AD-C的正切值;
(3)求證:直線PA與平面PBD所成的角φ為定值,并求sinφ值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

證明平行四邊形四條邊的平方和等于兩條對(duì)角線的平方和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知球的半徑是1,、、三點(diǎn)都在球面上,兩點(diǎn)和、兩點(diǎn)的球面距離都是、兩點(diǎn)的球面距離是,則二面角的大小是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(文科做)點(diǎn)B是A(3,7,-4)在xoz平面上的射影,則|
OB
|
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別在A1D,AC上,且A1E=A1D,AF=AC,則(  )
A.EF至多與A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF與BD1相交
D.EF與BD1異面

查看答案和解析>>

同步練習(xí)冊(cè)答案