已知數(shù)列的前項(xiàng)和為 ,對(duì)于任意的恒有    
(1) 求數(shù)列的通項(xiàng)公式 
(2)若證明: 
(1)(2)關(guān)鍵是得到

試題分析:解: (1) 當(dāng)時(shí),兩式相減得:

,,滿(mǎn)足
 數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列.

(2)證明:由(1)可知
 
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240158597371791.png" style="vertical-align:middle;" />

,由
當(dāng)時(shí),
則不等式成立.
另解:
,當(dāng)時(shí),總有(用數(shù)學(xué)歸納法證明,略)
當(dāng)
時(shí),

則不等式成立.
點(diǎn)評(píng):求一般數(shù)列的問(wèn)題時(shí),常用的方法是裂變法和錯(cuò)位相減法,本題就用到裂變法。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正項(xiàng)數(shù)列的首項(xiàng),前項(xiàng)和滿(mǎn)足
(Ⅰ)求證:為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)記數(shù)列的前項(xiàng)和為,若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知首項(xiàng)為的等比數(shù)列的前n項(xiàng)和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

是公比大于的等比數(shù)列,的前項(xiàng)和.若,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求的通項(xiàng)公式.
(Ⅱ)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四川省廣元市2008年新建住房400萬(wàn)平方米,其中有250萬(wàn)平方米是中低價(jià)房,預(yù)計(jì)在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長(zhǎng)8%.另外,每年新建住房中,中低價(jià)房的面積均比上一年增加50萬(wàn)平方米.那么,到哪一年底,
(1)該市歷年所建中低價(jià)房的累計(jì)面積(以2008年為累計(jì)的第一年)將首次不少于4 750萬(wàn)平方米?
(2)到2013年底,當(dāng)年建造的中低價(jià)房的面積占該年建造住房面積的比例首次大于85%嗎?為什么
(參考數(shù)據(jù):1.084≈1.36,1.085≈1.47,1.086≈1.59)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,若=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列的前n項(xiàng)和為.已知,且成等比數(shù)列,求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,則的前5項(xiàng)和=
A.7 B.15 C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,          

查看答案和解析>>

同步練習(xí)冊(cè)答案