已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,短軸端點(diǎn)和焦點(diǎn)圍成的四邊形是正方形,且橢圓上的點(diǎn)到焦點(diǎn)的最大值為
2
+1.
(1)求橢圓方程;
(2)過(guò)左焦點(diǎn)F且不與坐標(biāo)軸垂直交橢圓于A、B點(diǎn),線段AB的垂直平分線交x軸于G點(diǎn),求G點(diǎn)橫坐標(biāo)取值范圍.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由題意可知:b=c,c+a=
2
+1,由此能夠求出橢圓的方程.
(2)設(shè)直線AB的方程為y=k(x+1)(k≠0),代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.由直線AB過(guò)橢圓的左焦點(diǎn)F,記A(x1,y1),B(x2,y2),AB的中點(diǎn)N(x0,y0),x1+x2=
-4k2
1+2k2
,x0=
x1+x2
2
,y0=
y1+y2
2
,垂直平分線NG的方程為y-y0=-
1
k
(x-x0),由此能求出點(diǎn)G橫坐標(biāo)的取值范圍.
解答: 解:(1)∵短軸端點(diǎn)和焦點(diǎn)圍成的四邊形是正方形,且橢圓上的點(diǎn)到焦點(diǎn)的最大值為
2
+1,
∴b=c,c+a=
2
+1,
∴b=c=1,a=
2
,
∴橢圓方程為
x2
2
+y2=1
;
(2)設(shè)直線AB的方程為y=k(x+1)(k≠0),
代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.
∵直線AB過(guò)橢圓的左焦點(diǎn)F,∴方程有兩個(gè)不等實(shí)根.
記A(x1,y1),B(x2,y2),AB中點(diǎn)N(x0,y0),則x1+x2=
-4k2
1+2k2

x0=
x1+x2
2
,y0=
y1+y2
2

垂直平分線NG的方程為y-y0=-
1
k
(x-x0),
令y=0,得xG=x0+ky0=-
k2
2k2+1
=-
1
2
+
1
4k2+2

∵k≠0,∴-
1
2
<xG<0
∴點(diǎn)G橫坐標(biāo)的取值范圍為(-
1
2
,0).
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,綜合性強(qiáng),是高考的重點(diǎn),易錯(cuò)點(diǎn)是知識(shí)體系不牢固.本題具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2名女生和4名男生外出參加比賽活動(dòng).
(1)他們排成一列照相時(shí),若2名女生必須在一起,有多少種排列方法?
(2)他們排成一列照相時(shí),若2名女生不相鄰,有多少種排列方法?
(3)從這6名學(xué)生中挑選3人擔(dān)任裁判,至少要有1名女生,則有多少種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c分別是△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)的邊,且三角形周長(zhǎng)為6,a、b、c成等比數(shù)列.
(1)求∠B的取值范圍;
(2)求b的取值范圍;
(3)求△ABC的面積S的最大值及此時(shí)a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2
x2-x+1
,求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過(guò)點(diǎn)A(2,0)和點(diǎn)B(3,1),且圓心C在直線x-y-3=0上,過(guò)點(diǎn)P(0,1)且斜率為k的直線與圓C相交于不同的兩點(diǎn).
(1)求圓C的方程,同時(shí)求出k的取值范圍;
(2)是否存在常數(shù)k,使得向量
OM
+
ON
PC
共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[0,
6
]時(shí),討論關(guān)于x的方程2cos2x-sinx+α=0(α∈R)實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心在第二象限內(nèi),半徑為2
5
的圓O1與x軸交于(-5,0)和(3,0)兩點(diǎn).
(1)求圓O1的方程;
(2)求圓O1的過(guò)點(diǎn)A(1,6)的切線方程;
(3)已知點(diǎn)N(9,2)在(2)中的切線上,過(guò)點(diǎn)A作O1N的垂線,垂足為M,點(diǎn)H為線段AM上異于兩個(gè)端點(diǎn)的動(dòng)點(diǎn),以點(diǎn)H為中點(diǎn)的弦與圓交于點(diǎn)B,C,過(guò)B,C兩點(diǎn)分別作圓的切線,兩切線交于點(diǎn)P,求直線PO1的斜率與直線PN的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(
1
2
+2x)n的展開(kāi)式中.
(Ⅰ)若第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(Ⅱ)若前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用單調(diào)性的定義,討論f(x)=
ax
x2-1
在(-1,1)上的單調(diào)性,a為實(shí)數(shù)且a≠0.

查看答案和解析>>

同步練習(xí)冊(cè)答案