如圖所示,在棱長為2的正方體
ABCD-
A1B1C1D1中,
O是底面
ABCD的中心,
E、
F分別是
CC1、
AD的中點.那么異面直線
OE和
FD1所成的角的余弦值等于 ( ).
建立如圖所示的空間直角坐標(biāo)系,則
O(1,1,0),
E(0,2,1),
D1(0,0,2),
F(1,0,0),
=(-1,1,1),
=(-1,0,2),∴
·
=3,|
|=
,|
|=
,
∴cos〈
,
〉=
=
.
即
OE與
FD1所成的角的余弦值為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐
中,
底面
,且底面
為正方形,
分別為
的中點.
(1)求證:
平面
;
(2)求平面
和平面
的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)設(shè)點
是線段
上一個動點,試確定點
的位置,使得
平面
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知四棱錐
E-ABCD的底面為菱形,且∠
ABC=60°,
AB=
EC=2,
AE=
BE=
.
(1)求證:平面
EAB⊥平面
ABCD;
(2)求直線
AE與平面
CDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知向量
=(2,4,5),
=(3,x,y)分別是直線l
1、l
2的方向向量,若l
1∥l
2,則( 。
A.x=6,y=15 | B.x=3,y= | C.x=3,y=15 | D.x=6,y= |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在直三棱柱
ABC-A1B1C1中,∠
ACB=90°,
AA1=2,
AC=
BC=1,則異面直線
A1B與
AC所成角的余弦值是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若P是平面
外一點,A為平面
內(nèi)一點,
為平面
的一個法向量,則點P到平面
的距離是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,
是正三角形,四邊形
是矩形,且平面
平面
,
,
.
(Ⅰ) 若點
是
的中點,求證:
平面
;
(II)若點
為線段
的中點,求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知向量
(3,-2),
(-2,1),
(7,-4),若
,則
,
______.
查看答案和解析>>