【題目】已知函數(shù) 是定義在 上的奇函數(shù),且 偶函數(shù) 的定義域?yàn)? ,且當(dāng) 時(shí), .若存在實(shí)數(shù) ,使得 成立,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.

【答案】D
【解析】∵ ,∴當(dāng)0≤x≤1時(shí),2x﹣1∈[0,1],
當(dāng)x≥1時(shí), ∈(0,1],即x≥0時(shí),f(x)的值域?yàn)閇0,1],
∵f(x)是定義在R上的奇函數(shù),∴x≤0時(shí)f(x)的值域?yàn)閇﹣1,0],∴在R上的函數(shù)f(x)的值域?yàn)閇﹣1,1].
∵定義在{x|x≠0}上的偶函數(shù)g(x),x>0的g(x)=log2x,∴g(x)=log2|x|(x≠0)
∵存在實(shí)數(shù)a,使得f(a)=g(b)成立,∴令﹣1≤g(b)≤1.即﹣1≤log2|b|≤1.即有 ≤|b|≤2,∴ ≤b≤2或﹣2≤b≤﹣ .所以答案是:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇),還要掌握對(duì)數(shù)的運(yùn)算性質(zhì)(①加法:②減法:③數(shù)乘:)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若函數(shù)y=f(x)ex在x=﹣1處取得極值,則下列圖象不可能為y=f(x)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有2名男生和3名女生. (Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) 及圓 .
(1)設(shè)過(guò)點(diǎn) 的直線(xiàn) 與圓 交于 兩點(diǎn),當(dāng) 時(shí),求以線(xiàn)段 為直徑的圓 的方程;
(2)設(shè)直線(xiàn) 與圓 交于 兩點(diǎn),是否存在實(shí)數(shù) ,使得過(guò)點(diǎn) 的直線(xiàn) 垂直平分弦 ?若存在,求出實(shí)數(shù) 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 ,若對(duì)任意的非零實(shí)數(shù) ,存在唯一的非零實(shí)數(shù) ,使得 成立, . (并且寫(xiě)出 的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , .
(1)若函數(shù) 上是減函數(shù),求實(shí)數(shù) 的取值范圍;
(2)是否存在整數(shù) ,使得 的解集恰好是 ,若存在,求出 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線(xiàn)l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線(xiàn)l上,
(1)求a的值及直線(xiàn)l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線(xiàn)l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)正六棱柱的直觀(guān)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(﹣2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng) 最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案