(本小題滿分12分)
(1)已知函數(shù)f(x)=2x-x2,問方程f(x)=0在區(qū)間[-1,0]內(nèi)是否有解,為什么?
(2)若方程ax2-x-1=0在(0,1)內(nèi)恰有一解,求實數(shù)a的取值范圍.
(1) 方程f(x)=0在區(qū)間[-1,0]內(nèi)有解.(2) (2,+∞).

試題分析:
(1)因為第一問中,f(-1)=2-1-(-1)2=-<0,
f(0)=20-02=1>0,結(jié)合零點存在性定理可知,結(jié)論。
(2)方程ax2-x-1=0在(0,1)內(nèi)恰有一解,即函數(shù)f(x)=ax2-x-1在(0,1)內(nèi)恰有一個零點,則只要滿足端點的函數(shù)值一號即可。
(1) 因為f(-1)=2-1-(-1)2=-<0,
f(0)=20-02=1>0,
而函數(shù)f(x)=2x-x2的圖象是連續(xù)曲線,所以f(x)在區(qū)間[-1,0]內(nèi)有零點,即方程f(x)=0在區(qū)間[-1,0]內(nèi)有解.
(2)∵方程ax2-x-1=0在(0,1)內(nèi)恰有一解,即函數(shù)f(x)=ax2-x-1在(0,1)內(nèi)恰有一個零點,
∴f(0)·f(1)<0,即-1×(a-2)<0,解得a>2.
故a的取值范圍為(2,+∞).
點評:解決該試題的關(guān)鍵是根據(jù)零點的概念將方程解的問題轉(zhuǎn)換為關(guān)于圖像與圖像的交點問題來處理得到結(jié)論。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
若函數(shù)對任意的實數(shù),,均有,則稱函數(shù)是區(qū)間上的“平緩函數(shù)”.  
(1) 判斷是不是實數(shù)集R上的“平緩函數(shù)”,并說明理由;
(2) 若數(shù)列對所有的正整數(shù)都有 ,設,
求證: .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,則        。(指出范圍)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當m滿足什么條件時,在區(qū)間為增函數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義新運算“&”與“”:,則函數(shù) 
是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在區(qū)間上是增函數(shù),實數(shù)a組成幾何A,設關(guān)于x的方程的兩個非零實根,實數(shù)m使得不等式使得對任意恒成立,則m的解集是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)存在單調(diào)遞減區(qū)間,則實數(shù)的取值
范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義:若函數(shù)對于其定義域內(nèi)的某一數(shù),有,則稱的一個不動點. 已知函數(shù).
(1)當,時,求函數(shù)的不動點;
(2)若對任意的實數(shù)b,函數(shù)恒有兩個不動點,求實數(shù)的取值范圍;
(3)在(2)的條件下,若圖象上兩個點A、B的橫坐標是函數(shù)的不動點,且線段AB的中點C在函數(shù)的圖象上,求實數(shù)b的最小值.
(參考公式:若,則線段AB的中點坐標為)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)設.
(1)若恒成立,求實數(shù)的取值范圍;
(2)若時,恒成立,求實數(shù)的取值范圍;
(3)當時,解不等式.

查看答案和解析>>

同步練習冊答案