已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.
(1) a=1,b=1 (2)見解析 (3) k<-
【解析】(1)∵f(x)為R上的奇函數(shù),∴f(0)=0,b=1.
又f(-1)=-f(1),得a=1.
經(jīng)檢驗a=1,b=1符合題意.
(2)任取x1,x2∈R,且x1<x2,
則f(x1)-f(x2)=-
=
=.
∵x1<x2,∴->0,
又∵(+1)(+1)>0,
∴f(x1)-f(x2)>0,
∴f(x)在(-∞,+∞)上為減函數(shù).
(3)∵t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
∴f(t2-2t)<-f(2t2-k).
∵f(x)為奇函數(shù),∴f(t2-2t)<f(k-2t2),
∵f(x)為減函數(shù),∴t2-2t>k-2t2,
即k<3t2-2t恒成立,而3t2-2t=3(t-)2-≥-,∴k<-.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(八)第二章第五節(jié)練習卷(解析版) 題型:選擇題
已知實數(shù)a,b滿足等式2a=3b,下列五個關系式:①0<b<a;
②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的關系式有( )
(A)①②③ (B)①②⑤
(C)①③⑤ (D)③④⑤
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(九)第二章第六節(jié)練習卷(解析版) 題型:填空題
若二次函數(shù)f(x)=(x+a)(bx+2a)(a,b∈R)是偶函數(shù),且它的值域為(-∞,4],則該函數(shù)的解析式f(x)= .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(三)第一章第三節(jié)練習卷(解析版) 題型:選擇題
已知命題P:關于x的方程x2-ax+4=0有實根;命題Q:關于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù).若P或Q是真命題,P且Q是假命題,則實數(shù)a的取值范圍是( )
(A)(-12,-4]∪[4,+∞)
(B)[-12,-4]∪[4,+∞)
(C)(-∞,-12)∪(-4,4)
(D)[-12,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(三)第一章第三節(jié)練習卷(解析版) 題型:選擇題
命題“?x∈[1,2],x2-a≤0”為真命題的一個充分而不必要條件是( )
(A)a≥4 (B)a≤4 (C)a≥5 (D)a≤5
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(七)第二章第四節(jié)練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=關于x的方程f(x)+x-a=0有且只有一個實根,則實數(shù)a的取值范圍是( )
(A)a>1 (B)0<a<1
(C)a>2 (D)a<0
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(七)第二章第四節(jié)練習卷(解析版) 題型:選擇題
設a=22.5,b=2.50,c=()2.5,則a,b,c的大小關系是( )
(A)a>c>b (B)c>a>b
(C)a>b>c (D)b>a>c
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)(一)第一章第一節(jié)練習卷(解析版) 題型:選擇題
已知集合A={x|x≥0},B={0,1,2},則( )
(A)A⊆B (B)B⊆A
(C)A∪B=B (D)A∩B=?
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)四十八第七章第七節(jié)練習卷(解析版) 題型:選擇題
已知A(1,0,0),B(0,1,0),C(0,0,1),則平面ABC的一個單位法向量是( )
(A)(,,-) (B) (,-,) (C)(-,,) (D)(-,-,-)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com