【題目】已知函數(shù),在處的切線方程為.

(1)求的值

(2)當(dāng)時(shí),求證: .

【答案】(1);(2)見解析

【解析】試題分析:先從切線方程中找到的值,構(gòu)建方程組得參數(shù)的值.(2)中的不等式較為麻煩,可以根據(jù)(1)的提示,考慮之間的關(guān)系,然后再考慮的關(guān)系,兩者均需通過合理變形構(gòu)建新函數(shù)并利用導(dǎo)數(shù)去考慮.

解析:(1,因在處的切線為,故,解得.

(2),令,則.

當(dāng)時(shí), , 是減函數(shù);

當(dāng)時(shí), , 是增函數(shù);

所以,故上恒成立,也就是上恒成立,整理得到, 恒成立.故當(dāng)且僅當(dāng)等號(hào)成立.所以當(dāng)時(shí), .

, ,故上總成立, 上為增函數(shù),又,所以

當(dāng)時(shí), 上恒成立, ,故 ;

當(dāng)時(shí), 上恒成立, ,故也有;

綜上當(dāng)時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C,所對(duì)的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac= b2
(Ⅰ)當(dāng)p= ,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,an>0,a1= ,如果an+1是1與 的等比中項(xiàng),那么a1+ + + +… 的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)是否存在正整數(shù),使得上恒成立?若存在,求出的最大值并給出推導(dǎo)過程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長;
(2)求cos(A﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)解不等式 <0.
(2)若關(guān)于不等式x2﹣4ax+4a2+a≤0的解集為,則實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時(shí),求證:

(2)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線 ,動(dòng)圓過點(diǎn),且與直線相切.

(Ⅰ)求動(dòng)圓的圓心軌跡的方程;

(Ⅱ)過點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案