變量x、y滿足條件,設(shè),則z的最小值為    ,最大值為   
【答案】分析:先根據(jù)根的分布列出約束條件畫出可行域,再利用幾何意義求最值,本例中,的取值的幾何意義是斜率.
解答:解:作出可行域,如圖.
當(dāng)把z看作常數(shù)時(shí),它表示直線y=zx的斜率,
因此,當(dāng)直線y=zx過(guò)點(diǎn)A時(shí),z最大;
當(dāng)直線y=zx過(guò)點(diǎn)B時(shí),z最。
由x=1,3x+5y-25=0,得A(1,).
由x-4y+3=0,3x+5y-25=0,得B(5,2).
∴zmax==,zmin=
故填:;
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=x-y,式中變量x和y滿足條件
x+y-3≥0
x-2y≥0
,則z的最小值為( 。
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y 滿足條件
3x-y≤0
x-3y+5≥0
,則z=x+y得最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足條件
x+y≤4
y≥x
x≥1
,則z=x2+y2的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x、y滿足條件
y≤x
x+y≤
y≥-1
1
,求z=2x+y的最大值
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足條件
x-y+5≥0
x+y≥0
x≤3
,則z=2x-y的最小值為
-
15
2
-
15
2

查看答案和解析>>

同步練習(xí)冊(cè)答案