)袋中裝有大小相同的黑球、白球和紅球共10個。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中各色球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望Eξ和方差Dξ;
(1)袋中白球5個,黑球4個,紅球1個(2)ξ 0 1 2 3 P
解析試題分析:(1)因為從袋中任意摸出1球得到黑球的概率是,故設黑球個數(shù)為x,則
設白球的個數(shù)為y,又從袋中任意摸出2個球,至少得到1個白球的概率是,則
,故袋中白球5個,黑球4個,紅球1個。 6分
(2)由題設知ξ的所有取值是0,1,2,3,則隨機變量ξ的分布列為ξ 0 1 2 3 P
12分
考點:古典概型概率與分布列
點評:第一問古典概型概率的考查,需找到所有基本事件種數(shù)與滿足題意要求的基本事件種數(shù)求其比值,第二問求分布列的題目首先找到隨機變量取的值,然后求出其概率,匯總成分布列,由分布列可求出期望方差
科目:高中數(shù)學 來源: 題型:解答題
某班數(shù)學興趣小組有男生3名,記為,女生2名,記為,現(xiàn)從中任選2名學生去參加校數(shù)學競賽
⑴寫出所有的基本事件
⑵求參賽學生中恰好有一名男生的概率
⑶求參賽學生中至少有一名男生的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
目前,在我國部分省市出現(xiàn)了人感染H7N9禽流感病毒,為有效防控,2013年4月下旬,北京疫苗研制工作進入動物免疫原性試驗階段。假定現(xiàn)已研制出批號分別為1,2,3,4,5的五批疫苗,準備在A、B、C三種動物身上做試驗,給每種動物做實驗所選用的疫苗是從這五個批號中任選其中一個批號的疫苗.
(Ⅰ)求給三種動物注射疫苗的批號互不相同的概率;
(Ⅱ)記給A、B、C三種動物注射疫苗的批號最大數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某高校在2013年考試成績中100名學生的筆試成績的頻率分布直方圖如圖所示,
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
① 已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙不同時進入第二輪面試的概率;
② 若第三組被抽中的學生實力相當,在第二輪面試中獲得優(yōu)秀的概率均為,設第三組中被抽中的學生有名獲得優(yōu)秀,求的分布列和數(shù)學期望。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
哈爾濱市五一期間決定在省婦女兒中心舉行中學生“藍天綠樹、愛護環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時每局勝者得1分,負者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設某學校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結(jié)束時比賽停止的概率為.
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)求在1次游戲中,
(i)摸出3個白球的概率;
(ii)獲獎的概率;
(Ⅱ)求在2次游戲中獲獎次數(shù)的分布列及數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知關于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a,b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲乙兩人各有一個箱子,甲的箱子里面放有個紅球,個白球(,且);乙的箱子里面放有2個紅球,1個白球,1個黃球.現(xiàn)在甲從自己的箱子里任取2個球,乙從自己的箱子里任取1個球.若取出的3個球顏色都不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色球的個數(shù),才能使自己獲勝的概率最大?并求甲獲勝的概率的最大值.
(2) 當甲獲勝的概率取得最大值時,求取出的3個球中紅球個數(shù)的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com