已知全集為R,集合A=﹛x|x2-x-2≥0﹜,則CRA  )
A、﹛x|x<1,或x>2﹜
B、﹛x|x<-1,或x≥2﹜
C、﹛x|-1<x<2﹜
D、﹛x|-1≤x≤2﹜
考點(diǎn):補(bǔ)集及其運(yùn)算
專題:集合
分析:根據(jù)集合關(guān)系即可得到結(jié)論.
解答: 解:A=﹛x|x2-x-2≥0﹜={x|x≥2或x≤-1},
∴CRA={x|-1<x<2},
故選:C
點(diǎn)評:本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+y-3=0與直線6x+my+1=0平行,則兩直線之間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若
OP
OQ
=-2,求實(shí)數(shù)k的值;
(3)過點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于曲線C:
x2
4
+y4
=1,給出下列四個(gè)結(jié)論:
①曲線C是橢圓;              
②關(guān)于坐標(biāo)原點(diǎn)中心對稱;
③關(guān)于直線y=x軸對稱;      
④所圍成封閉圖形面積小于8.
則其中正確結(jié)論的序號是
 
.(注:把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O:x2+y2=1,直線l:y=k(x-2)與⊙O交于A、B兩點(diǎn),設(shè)A、B的中點(diǎn)為M,則點(diǎn)M的軌跡形成的曲線長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4.點(diǎn)M,N分別是AA1,AB的中點(diǎn),則異面直線CM與D1N所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

⊙O1,⊙O2相交于A,B,⊙O2過⊙O1的圓心O1點(diǎn).
(1)如圖1,過A做⊙O1的一條直徑AC,連接CB并延長交⊙O2于點(diǎn)D,連接DO1,求證:DO1⊥AC;
(2)如圖2,過A做⊙O1的一條非直徑的弦AC,連接CB并延長交⊙O2于點(diǎn)D,則DO1與AC還垂直嗎?請證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線f(x)=x3-bx2+3x的凹凸區(qū)間和拐點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=
1
2
an2-an+2.求證:1≤an<2.

查看答案和解析>>

同步練習(xí)冊答案