甲、乙兩人一起去游玩,他們約定各自獨立地從1到6號景點中任選4個進行游覽,每個景點參觀1小時,則最后1小時他們在同一個景點的概率是(  )
A.B.C.D.
D
若用{1,2,3,4,5,6}代表6個景點,顯然甲、乙兩人選擇的基本事件為6×6=36個,其中滿足題意的在同一個景點包括=6個基本事件,所以所求的概率為,選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
頻數(shù)
10
20
16
16
15
13
10
 
①假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設豆子不落在線上,下列事件的概率:

(1)豆子落在紅色區(qū)域概率為;
(2)豆子落在黃色區(qū)域概率為;
(3)豆子落在綠色區(qū)域概率為;
(4)豆子落在紅色或綠色區(qū)域概率為;
(5)豆子落在黃色或綠色區(qū)域概率為.
其中正確的結論有(   )
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某工廠生產A,B兩種元件,其質量按測試指標劃分,指標大于或等于82為正品,小于82為次品.現(xiàn)隨機抽取這兩種元件各100個進行檢測,檢測結果統(tǒng)計如下:
測試
指標
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)試分別估計元件A,元件B為正品的概率;
(2)生產1個元件A,若是正品則盈利40元,若是次品則虧損5元;生產1個元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,
(ⅰ)X為生產1個元件A和1個元件B所得的總利潤,求隨機變量X的分布列和數(shù)學期望;
(ⅱ)求生產5個元件B所得利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙、丙三名音樂愛好者參加某電視臺舉辦的演唱技能海選活動,在本次海選中有合格和不合格兩個等級.若海選合格記分,海選不合格記分.假設甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨立的.
(1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;
(2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機變量,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,
①列出所有可能的抽取結果;
②求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某人一周晚上值班2次,在已知他周日一定值班的條件下,他在周六晚上值班的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲乙兩人一起去游“2011西安世園會”,他們約定,各自獨立地從1到6號景點中任選4個進行游覽,每個景點參觀1小時,則最后一小時他們同在一個景點的概率是 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知甲盒中僅有1個球且為紅球,乙盒中有個紅球和個籃球,從乙盒中隨機抽取個球放入甲盒中.
(a)放入個球后,甲盒中含有紅球的個數(shù)記為;
(b)放入個球后,從甲盒中取1個球是紅球的概率記為.
A.B.
C.D.

查看答案和解析>>

同步練習冊答案