【題目】如圖,在半徑為2,圓心角為 的扇形金屬材料中剪出一個四邊形MNQP,其中M、N兩點分別在半徑OA、OB上,P、Q兩點在弧 上,且OM=ON,MN∥PQ.
(1)若M、N分別是OA、OB中點,求四邊形MNQP面積的最大值.
(2)PQ=2,求四邊形MNQP面積的最大值.

【答案】
(1)解:連接OP,OQ,則四邊形MNQP為梯形.

設∠AOP=∠BOQ=θ∈(0, ),則∠POQ= ﹣2θ,且此時OM=ON=1,

四邊形MNQP面積S= sinθ+ sinθ+ ×2sin( ﹣2θ)﹣ =﹣4sin2θ+2sinθ+ ,

∴sinθ= ,S取最大值


(2)解:設OM=ON=x∈(0,2),

由PQ=2可知∠POQ= ,∠AOQ=∠BOP= ,

∴sin = ,

∴四邊形MNQP面積S= x+ x+ x2=﹣ x2+ x+ ,

∴x= ,S取最大值為


【解析】(1)設∠AOP=∠BOQ=θ∈(0, ),則∠POQ= ﹣2θ,且此時OM=ON=1,利用分割法,即可求四邊形MNQP面積的最大值.(2)PQ=2,可知∠POQ= ,∠AOQ=∠BOP= ,利用分割法,即可求四邊形MNQP面積的最大值.
【考點精析】本題主要考查了三角函數(shù)的最值的相關知識點,需要掌握函數(shù),當時,取得最小值為;當時,取得最大值為,則,,才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設{an}是各項都為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a3+b5=13,a5+b3=21.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設數(shù)列{an}的前n項和為Sn , 求數(shù)列{Snbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的定義域R,則實數(shù)a的取值范圍為(
A.a≤0或a≥4
B.0<a<4
C.0≤a≤4
D.a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設點 (1,0),直線: ,點在直線上移動, 是線段軸的交點, 異于點RQ滿足 , .

1求動點的軌跡的方程;

2 的軌跡的方程為,過點作兩條互相垂直的曲線

的弦. ,設. 的中點分別為

問直線是否經過某個定點?如果是,求出該定點,

如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)

設數(shù)列的前項的和為,已知.

⑴求,;

⑵設,若對一切,均有,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:2ax+y﹣1=0,l2:ax+(a﹣1)y+1=0,
(1)若l1⊥l2 , 求實數(shù)a的值;
(2)若l1∥l2時,求直線l1與l2之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù),直線y=t與函數(shù)y=f(x)的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數(shù)t的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系中, 為極點,半徑為2的圓的圓心坐標為.

1)求圓的極坐標方程;

2)設直角坐標系的原點與極點重合, 軸非負關軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案