選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+b2+c2+m-1=0
(I)求證:a2+b2+c2
(II)求實(shí)數(shù)m的取值范圍.
【答案】分析:(I)根據(jù)柯西不等式直接證明即可;
(II)將(i)中的a、b、c用等式a+b+c+2-2m=0,a2+++m-1=0代入,消去a、b、c得到關(guān)于m的不等關(guān)系,解之即可求出m的范圍.
解答:解:(I)根據(jù)柯西不等式可得(a2++)(1+22+32)≥=(a+b+c)2
∴a2++
(II)∵a+b+c+2-2m=0,a2+++m-1=0
∴1-m≥解得:-≤m≤1.
點(diǎn)評(píng):本題主要考查來了逆矩陣與投影變換,以及圓的參數(shù)方程和直線的參數(shù)方程,以及不等式的證明等基礎(chǔ)知識(shí),是一道綜合題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案