福布斯2009年中國(guó)富豪榜發(fā)布后,有人認(rèn)為中國(guó)富豪受益于活躍的股票市場(chǎng),得益于強(qiáng)勁的資本市場(chǎng).股票有風(fēng)險(xiǎn)應(yīng)考慮中長(zhǎng)期投資,若某股票上市時(shí)間能持續(xù)15年,預(yù)測(cè)上市初期和后期會(huì)因供求及市場(chǎng)前景分析使價(jià)格呈連續(xù)上漲態(tài)勢(shì),而中期有將出現(xiàn)供大于求使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格隨發(fā)行年數(shù)x的模擬函數(shù):(A)f(x)=p-qx;(B)f(x)=logqx+p;(C)f(x)=(x-1)(x-q)2+p(以上三式中p,q均為常數(shù),且q>2).
(1)為準(zhǔn)確研究其價(jià)格走勢(shì),應(yīng)選哪種價(jià)格模擬函數(shù)?為什么?
(2)若f(1)=4,f(3)=6 ①求出所選函數(shù)f(x)的解析式;②一般散戶為保證個(gè)人的收益,通?紤]打算在價(jià)格下跌期間出股票,請(qǐng)問(wèn)他們會(huì)在哪幾個(gè)年份出售?
考點(diǎn):根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)判斷A,B是單調(diào)函數(shù);C有兩個(gè)零點(diǎn),可以出現(xiàn)兩個(gè)遞增區(qū)間和一個(gè)遞減區(qū)間,即可得出結(jié)論;
(2)求出p=4,q=4,可得函數(shù)解析式,求導(dǎo)數(shù),即可得出結(jié)論.
解答: 解:(1)因?yàn)閒(x)=p-qx是單調(diào)函數(shù);f(x)=logqx+p也是單調(diào)函數(shù);
在f(x)=(x-1)(x-q)2+p中,f′(x)=3x2-(4q+2)x+q2+2q
令f′(x)=0,可得x=q或x=
q+2
3
,
所以函數(shù)f(x)有兩個(gè)零點(diǎn),可以出現(xiàn)兩個(gè)遞增區(qū)間和一個(gè)遞減區(qū)間,
所以因選f(x)=(x-1)(x-q)2+p為其價(jià)格模擬函數(shù).…(6分)
(2)由f(1)=4,f(3)=6,可得p=4,q=4(其中q=2舍去),
所以f(x)=x3-9x2+24x-12(1≤x≤15,x∈N+),
所以f′(x)=3x2-18x+24<0,
所以f(x)在區(qū)間(2,4)上單調(diào)遞減.
故他們會(huì)在發(fā)行的第2,3年出售.…(13分)
點(diǎn)評(píng):本題考查根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x1是方程7x+x-4=0的根,x2是方程log7(x-1)+x-5=0的根,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若log2x∈[0,2],則函數(shù)y=(
1
2
)x2-4x+3
的值域?yàn)?div id="maakvbm" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某算法的流程圖如圖所示,則程序運(yùn)行結(jié)束時(shí)輸出的結(jié)果為( 。
A、10B、19
C、-10D、-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
4
-
y2
2
=1
(1)過(guò)M(1,1)的直線交雙曲線于A,B兩點(diǎn),若M 為AB的中點(diǎn),求直線AB的方程.
(2)是否存在直線L,使N(1,
1
2
)為L(zhǎng)被雙曲線所截弦的中點(diǎn),若存在,求出L的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m,設(shè)函數(shù)G(x)=f(x)-g(x)-1.
(1)求證:函數(shù)f(x)-g(x)必有零點(diǎn)
(2)若|G(x)|在[-1,0]上是減函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在整數(shù)a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的方程y2=4x,過(guò)定點(diǎn)P(-2,1)且斜率為k的直線l與拋物線y2=4x相交于不同的兩點(diǎn).求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:兩個(gè)非零向量
a
=(m-1,n-1),
b
=(m-3,n-3),且
a
b
的夾角是鈍角或直角,則m+n的取值范圍是(  )
A、(
2
,3
2
B、(2,6)
C、[
2
,3
2
]
D、[2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
OA
=(t,1)(t∈Z),
OB
=(2,4)
,滿足|
OA
|≤4,則△OAB為直角三角形的概率是( 。
A、
4
7
B、
3
7
C、
2
7
D、
1
7

查看答案和解析>>

同步練習(xí)冊(cè)答案