【題目】設(shè)k∈R,對(duì)任意的向量 , 和實(shí)數(shù)x∈[0,1],如果滿(mǎn)足 ,則有 成立,那么實(shí)數(shù)λ的最小值為( )
A.1
B.k
C.
D.
【答案】C
【解析】解:當(dāng)向量 = 時(shí),可得向量 , 均為零向量,不等式成立;
當(dāng)k=0時(shí),即有 = ,則有 ,即為x| |≤λ| |,
即有λ≥x恒成立,由x≤1,可得λ≥1;
當(dāng)k≠0時(shí), ≠ ,由題意可得有 = | |,
當(dāng)k>1時(shí), >| ﹣ |,
由| ﹣x |≤| ﹣ |<| |,可得:
≤1,則有 ≥1,即λ≥k.
即有λ的最小值為 .
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解向量的三角形法則的相關(guān)知識(shí),掌握三角形加法法則的特點(diǎn):首尾相連;三角形減法法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)在處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線(xiàn)段BD的中點(diǎn),設(shè)點(diǎn)P在線(xiàn)段CC1上,直線(xiàn)OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)E:y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)K,過(guò)點(diǎn)K作圓C:(x﹣2)2+y2=1的兩條切線(xiàn),切點(diǎn)為M,N,|MN|=
(1)求拋物線(xiàn)E的方程
(2)設(shè)A、B是拋物線(xiàn)E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 = (其中O為坐標(biāo)原點(diǎn))
①求證:直線(xiàn)AB必過(guò)定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo)
②過(guò)點(diǎn)Q作AB的垂線(xiàn)與拋物線(xiàn)交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( ).
A.已知F1(-4,0),F(xiàn)2(4,0),到F1,F2兩點(diǎn)的距離之和等于8的點(diǎn)的軌跡是橢圓
B.已知F1(-4,0),F(xiàn)2(4,0),到F1,F2兩點(diǎn)的距離之和為6的點(diǎn)的軌跡是橢圓
C.到F1(-4,0),F(xiàn)2(4,0)兩點(diǎn)的距離之和等于點(diǎn)M(5,3)到F1,F2的距離之和的點(diǎn)的軌跡是橢圓
D.到F1(-4,0),F(xiàn)2(4,0)兩點(diǎn)距離相等的點(diǎn)的軌跡是橢圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 C 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在 X 軸上,橢圓 C 上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(1)求橢圓 C 的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn) 與橢圓 C 相交于 A,B 兩點(diǎn)( A,B 不是左右頂點(diǎn)),且以 AB 為直徑的圖過(guò)橢圓 C 的右頂點(diǎn).求證:直線(xiàn) l 過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假:
(1)存在一個(gè)函數(shù),既是偶函數(shù)又是奇函數(shù);
(2)每一條線(xiàn)段的長(zhǎng)度都能用正有理數(shù)來(lái)表示;
(3)存在一個(gè)實(shí)數(shù)x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),下列說(shuō)法錯(cuò)誤的是( )
A. 是的極小值點(diǎn) B. 函數(shù)有且只有1個(gè)零點(diǎn)
C. 存在正實(shí)數(shù),使得恒成立 D. 對(duì)任意兩個(gè)正實(shí)數(shù),且,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值;
(Ⅱ)若曲線(xiàn)上的所有點(diǎn)都在直線(xiàn)的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com