以橢圓
x2
169
+
y2
144
=1
的右焦點(diǎn)為圓心,且與雙曲線
x2
9
-
y2
16
=1
的漸近線相切的圓的方程是( 。
A、x2+y2-10x+9=0
B、x2+y2-10x-9=0
C、x2+y2+10x+9=0
D、x2+y2+10x-9=0
分析:要求圓的方程,首先求圓心坐標(biāo),根據(jù)橢圓的簡單性質(zhì)找出a與b的值,求出c的值,寫出橢圓右焦點(diǎn)的坐標(biāo)即為圓心坐標(biāo),然后找半徑,根據(jù)雙曲線的簡單性質(zhì)找出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求出圓心到漸近線的距離d即為圓的半徑,最后根據(jù)圓心坐標(biāo)和半徑寫出圓的標(biāo)準(zhǔn)方程即可.
解答:解:由橢圓的方程得a=13,b=12,根據(jù)橢圓的簡單性質(zhì)得:c=
132-122
=5,
所以右焦點(diǎn)坐標(biāo)為(5,0),即所求圓心坐標(biāo)為(5,0),
由雙曲線的方程得到a=3,b=4,所以雙曲線的漸近線方程為y=±
4
3
x,即±4x-3y=0,
由雙曲線的漸近線與所求的圓相切,得到圓心到直線的距離d=
|20|
5
=4=r,
則所求圓的方程為:(x-5)2+y2=16,即x2+y2-10x+9=0.
故選A.
點(diǎn)評(píng):此題考查了橢圓及雙曲線的簡單性質(zhì),直線與圓的位置關(guān)系及圓的標(biāo)準(zhǔn)方程.掌握橢圓及雙曲線的簡單性質(zhì)是解本題的關(guān)鍵,同時(shí)注意直線與圓相切時(shí)圓心到直線的距離等于圓的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓
x2
169
+
y2
144
=1
的右焦點(diǎn)為圓心,且與雙曲線
x2
9
-
y2
16
=1
的漸近線相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試求以橢圓
x2
169
+
y2
144
=1的右焦點(diǎn)為圓心,且與雙曲線
x2
9
-
y2
16
=1的漸近線相切的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓
x2
169
+
y2
144
=1
的右焦點(diǎn)為圓心,且與拋物線y2=-4x的準(zhǔn)線相切的圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓
x2
169
+
y2
144
=1
的右焦點(diǎn)為圓心,且與拋物線y2=-4x的準(zhǔn)線相切的圓的方程是( 。
A.x2+y2-10x+9=0B.x2+y2-10x-9=0
C.x2+y2+10x+9=0D.x2+y2+10x-9=0

查看答案和解析>>

同步練習(xí)冊(cè)答案